Abstract:
Embodiments of an apparatus including a pixel array including a plurality of individual pixels grouped into pixel kernels having two or more individual pixels, wherein each pixel kernel includes a floating diffusion electrically coupled to all individual pixels in the kernel. A color filter array (CFA) is positioned over and optically coupled to the pixel array, the CFA comprising a plurality of tiled minimal repeating units, each including a plurality of scaled filters having a photoresponse selected from among two or more different photoresponses. Individual pixels within each pixel kernel are optically coupled to a scaled filter. Circuitry and logic coupled to the pixel array cause the apparatus to operate in a first mode wherein signals from a subset of individual pixels are individually transferred to their floating diffusion and read, resulting in a high-resolution, low-sensitivity sub-image and a second mode wherein signals from individual pixels in every pixel kernel are binned into the kernel's floating diffusion and read, resulting in a low-resolution, high-sensitivity image.
Abstract:
Embodiments of an apparatus including a pixel array including a plurality of individual pixels grouped into pixel kernels having two or more individual pixels, wherein each pixel kernel includes a floating diffusion electrically coupled to all individual pixels in the kernel. A color filter array (CFA) is positioned over and optically coupled to the pixel array, the CFA comprising a plurality of tiled minimal repeating units, each including a plurality of scaled filters having a photoresponse selected from among two or more different photoresponses. Individual pixels within each pixel kernel are optically coupled to a scaled filter. Circuitry and logic coupled to the pixel array cause the apparatus to operate in a first mode wherein signals from a subset of individual pixels are individually transferred to their floating diffusion and read, resulting in a high-resolution, low-sensitivity sub-image and a second mode wherein signals from individual pixels in every pixel kernel are binned into the kernel's floating diffusion and read, resulting in a low-resolution, high-sensitivity image.
Abstract:
An example bandgap reference circuit includes an amplifier, a first, a second, and a third switch, and a capacitor. The first switch is coupled between an inverting input and an output of the amplifier to provide a negative feedback loop around the amplifier when the first switch is closed. The capacitor has a first end coupled to the inverting input, and a second end coupled to the second switch, where the capacitor is charged to a voltage substantially equal to an offset voltage of the amplifier when the second switch is closed. The third switch is coupled to a second end of the capacitor, where the voltage across the capacitor is subtracted from an input loop of the reference circuit to cancel the offset voltage of the amplifier when the third switch is closed.
Abstract:
An example bandgap reference circuit includes an amplifier, a first, a second, and a third switch, and a capacitor. The first switch is coupled between an inverting input and an output of the amplifier to provide a negative feedback loop around the amplifier when the first switch is closed. The capacitor has a first end coupled to the inverting input, and a second end coupled to the second switch, where the capacitor is charged to a voltage substantially equal to an offset voltage of the amplifier when the second switch is closed. The third switch is coupled to a second end of the capacitor, where the voltage across the capacitor is subtracted from an input loop of the reference circuit to cancel the offset voltage of the amplifier when the third switch is closed.