Abstract:
A computer-assisted surgery system comprises a calibrating instrument adapted to be applied to a pelvis in a known manner, and a surgical instrument. A computer-assisted processor unit operating a surgical assistance procedure and comprises at least one portable inertial sensor unit configured to be connected to the at least one calibrating instrument and the at least one surgical instrument, the portable inertial sensor unit outputting readings representative of its orientation. A geometrical relation data module provides a geometrical relation data between the orientation of the portable inertial sensor unit, of the calibrating instrument and of the surgical instrument. A coordinate system module sets a coordinate system of the pelvis in which an anterior-posterior axis of the pelvis is generally in a direction of gravity, and in which a medio-lateral axis of the pelvis is obtained from readings of the at least one portable inertial sensor unit on the calibrating instrument using the geometrical relation data therebetween. A tracking module tracks movements of the at least one surgical instrument relative to the coordinate system using readings from the inertial sensor unit on the surgical instrument using the geometrical relation data therebetween, and calculates navigation data for the movements, the navigation data relating the orientation of the surgical instrument to the orientation of the pelvis. An interface outputs the navigation data.
Abstract:
A system for measuring a length variation between body portions in computer-assisted surgery between a preoperative condition and intra- or post-operative condition comprises a a rangefinder configured to measure its distance to at least one reference landmark on at least a first body portion of a patient from a known position relative to a second body portion. A support includes joint(s) allowing one or more rotational degree of freedom of movement of the rangefinder to point to the at least one reference landmark. An inertial sensor unit is connected to the rangefinder to produce orientation data for the rangefinder. A computer-assisted surgery processing unit has a tracking module for tracking the rangefinder in a virtual coordinate system using the orientation data, a coordinate system module for determining coordinates in the virtual coordinate system of the at least one reference landmark using the distance and the orientation data, and a length calculation module for measuring a length between the body portions using the coordinates, the length calculation module calculating and outputting the length variation between the body portions by using said length obtained from a preoperative condition and said length obtained from an intra- or post-operative condition. A method for measuring a length variation between body portions in computer-assisted surgery between a preoperative condition and intra- or post-operative condition is also provided.
Abstract:
A reference jig comprises a base adapted to be secured to a distal end of a bone. An adjustment mechanism has a bracket, one or more rotational joints operatively mounting the bracket to the base, whereby the bracket is rotatable in two or more rotational degrees of freedom relative to the base, and one or more translational joints. A landmark alignment unit is operatively connectable to the bracket by the at least one translational joint, the landmark alignment unit having a bone alignment component configured to be aligned with at least one bone landmark.
Abstract:
A tibia cutting assembly includes a tibia cut guide with at least one cut slot. A guide rod has a guide holder mountable to the cut guide at a first end of the guide rod, and a second end of the guide rod is mountable non-invasively about a skin of a patient. The guide rod is extendable in length to displace the tibia cut guide and adjust a position thereof with respect to a tibia of the patient. The guide holder cooperates with the tibia cut guide to adjust an orientation of the tibia cut guide. A first inertial sensor is mountable to the guide holder and is displaceable therewith, and a second inertial sensor is mountable to the guide rod at the second end thereof.
Abstract:
A computer-assisted surgery (CAS) system for navigating a surface of an anatomical feature in a coordinate system comprises an apparatus for obtaining points of a surface of an anatomical feature including a base adapted to be secured to the anatomical feature, a spherical joint supported by the base, the spherical joint having a ball member rotatable in at least two rotational degrees of freedom relative to the base and having a center of rotation fixed relative to the base, a distance-measurement device connected to the ball member such that a distance-measurement axis of the distance-measurement device passes through said center of rotation of the ball member. An inertial sensor unit produces signals representative of the orientation of the distance-measurement device. A CAS processor receives the signal from the at least one inertial sensor unit and outputs orientation data relating at least an object relative to the surface of the anatomical feature using the model of the surface in the coordinate system and the signals from the at least one inertial sensor unit.
Abstract:
A computer-assisted surgery system for guiding alterations to a bone, comprises a trackable member secured to the bone. The trackable member has a first inertial sensor unit producing orientation-based data. A positioning block is secured to the bone, and is adjustable once the positioning block is secured to the bone to be used to guide tools in altering the bone. The positioning block has a second inertial sensor unit producing orientation-based data. A processing system providing an orientation reference associating the bone to the trackable member comprises a signal interpreter for determining an orientation of the trackable member and of the positioning block. A parameter calculator calculates alteration parameters related to an actual orientation of the positioning block with respect to the bone.