Abstract:
A pin placement instrument for placing a pin in a bone comprises an anatomical interface with a hook-like portion being opened in a lateral direction of the instrument to receive a bone therein in a planned position. A drill guide is connected to the anatomical interface and defining at least one guide slot in a longitudinal direction of the instrument. The guide slot has a lateral opening over its full length in the drill guide to allow lateral withdrawal of the instrument in said lateral direction with the pin placed in the bone passing through the lateral opening. A bushing is removably placed in said guide slot via said longitudinal direction in a planned fit, the bushing defining a throughbore aligned with the guide slot and adapted to receive the pin extending in said longitudinal direction when the bushing is in the guide slot for pin placement.
Abstract:
A system for tracking at least one bone in robotized computer-assisted surgery, comprises a processing unit and a non-transitory computer-readable memory communicatively coupled to the processing unit and comprising computer-readable program instructions executable by the processing unit for: obtaining backscatter images of the at least one bone from a tracking device in a coordinate system; generating a three-dimensional geometry of a surface of the at least one bone from the backscatter images, the three-dimensional geometry of the surface being in the coordinate system; determining a position and orientation of the at least one bone in the coordinate system by matching the three-dimensional geometry of the surface of the at least one bone to a three-dimensional model of the bone; controlling an automated robotized variation of at least one of a position and orientation of the tracking device as a function of a processing of the backscatter images; and continuously outputting the position and orientation of the at least one bone in the coordinate system to a robot driver controlling a robot arm supporting a surgical tool in the coordinate system for altering the bone.
Abstract:
A system and method may be used to evaluate soft tissue. A knee arthroplasty soft tissue evaluation may use an adjustable spacer, such as varying sized physical spacers or an inflatable bladder, along with a sensor to measure force, pressure, gap distance, or the like during a range of motion test. A method may include maintaining an equal pressure or gap distance for a medial component and a lateral component of an adjustable spacer during a range of motion test. Information, including, for example a maximum or minimum gap distance or pressure may be determined during the range of motion test. The determined information may be output for display or used to update a surgical plan.
Abstract:
Embodiments of a system and method for digitizing locations within a coordinate system are generally described herein. A device may include a sleeve including a sleeve tracking marker and a tracked probe portion including an array of tracking markers and a probe tip. Movement of the probe tip relative to the sleeve between at least a first position and a second position may be monitored by tracking the sleeve tracking marker relative to at least one tracking marker of the array of tracking markers.
Abstract:
A pin placement instrument for placing a pin in a bone comprises an anatomical interface with a hook-like portion being opened in a lateral direction of the instrument to receive a bone therein in a planned position. A drill guide is connected to the anatomical interface and defining at least one guide slot in a longitudinal direction of the instrument. The guide slot has a lateral opening over its full length in the drill guide to allow lateral withdrawal of the instrument in said lateral direction with the pin placed in the bone passing through the lateral opening. A bushing is removably placed in said guide slot via said longitudinal direction in a planned fit, the bushing defining a throughbore aligned with the guide slot and adapted to receive the pin extending in said longitudinal direction when the bushing is in the guide slot for pin placement.
Abstract:
A system for determining a position and an orientation of a bone of an anatomical feature includes a trackable reference device having a surgical pin at a first position being attachable to the bone. A wearable attachment attached to the trackable reference device is configured to be mounted about the outer-skin surface of the anatomical feature. A distance sensor mounted to the trackable reference device at a second position is operable to determine a distance measurement of the second position of the trackable reference device from the bone. Reference markers are fixedly mounted to the trackable reference device. A position sensing device registers position and orientation readings of the reference markers in a reference coordinate system. A processing unit determines the position and the orientation of the bone in the reference coordinate system using the position and orientation readings and the distance measurement.
Abstract:
Systems and methods for determining position and orientation of a bone of an anatomical feature are described. These include the use of a wearable holder configured to be mounted about an outer-skin surface of the anatomical feature, such that the anatomical feature and the bone are positioned in fixed relation with respect to the wearable holder when the wearable holder is mounted about the anatomical feature. Reference marker arrays are fixedly mounted to the wearable holder, each being positioned on the wearable holder to identify a landmark of the bone within the wearable holder when the wearable holder is mounted to the anatomical feature. The position and orientation of the reference markers are trackable to determine position and orientation of the wearable holder in a reference coordinate system, thereby enabling position and orientation of the landmarks on the bone to be determined.
Abstract:
Embodiments of a system and method for digitizing locations within a coordinate system are generally described herein. A device may include a sleeve including a sleeve tracking marker and a tracked probe portion including an array of tracking markers and a probe tip. Movement of the probe tip relative to the sleeve between at least a first position and a second position may be monitored by tracking the sleeve tracking marker relative to at least one tracking marker of the array of tracking markers.
Abstract:
Embodiments of a system and method for digitizing locations within a coordinate system are generally described herein. A device may include a sleeve including a sleeve tracking marker and a tracked probe portion including an array of tracking markers and a probe tip. Movement of the probe tip relative to the sleeve between at least a first position and a second position may be monitored by tracking the sleeve tracking marker relative to at least one tracking marker of the array of tracking markers.
Abstract:
Embodiments of a system and method for digitizing locations within a coordinate system are generally described herein. A device may include a sleeve including a sleeve tracking marker and a tracked probe portion including an array of tracking markers and a probe tip. Movement of the probe tip relative to the sleeve between at least a first position and a second position may be monitored by tracking the sleeve tracking marker relative to at least one tracking marker of the array of tracking markers.