Abstract:
A spectrometer module and a fabrication method thereof are provided. The fabrication method includes the steps of: providing at least one substrate; and forming at least one positioning side and at least one optical component of the spectrometer on the at least one substrate by a microelectromechanical systems (MEMS) process. The spectrometer module fabricated by the fabrication method includes a plurality of substrates and at least one optical component. At least one of the substrates has at least one positioning side, and the at least one optical component of the spectrometer is formed on at least one of the substrates. The positioning side and the optical component are fabricated by a MEMS process.
Abstract:
A spectrometer (100) and an optical input portion (32) thereof are disclosed. The optical input portion (32) comprises an assembly structure (322), and the assembly structure (322) is formed at a hole wall (321) of a through hole (3211) of the optical input portion (32). A light (L1) is incident into a dispersing element (2) of the spectrometer (100) along an optical path (13) after passing through the through hole (3211), and is dispersed by the dispersing element (2). The assembly structure (322) is used to be detachably assembled with an optical element (200). When the optical element (200) is assembled with the assembly structure (322), an optical axis of the optical element (200) is linked to the optical path (13). As a result, the light (L1) passing through the optical element (200) is incident to the dispersing element (2) along the optical axis and the optical path (13).
Abstract:
An fabrication method of a waveguide sheet for a spectrometer includes the steps of: providing a pattern to be performed by a microelectromechanical (MEM) process; and forming at least one waveguide sheet based on the provided pattern by the MEM process. The pattern includes a shape of a first waveguide sheet. The waveguide sheet includes at least one positioning side and at least one stray light elimination side formed by the MEM process. The positioning side is for a spectral component of the spectrometer to abut against so that the spectral component is positioned at the positioning side, and the stray light elimination side is to be used as a side of a stray light outlet. The structure of the waveguide sheet and the configuration of the spectrometer are also provided.
Abstract:
An optical head for receiving an incident light is provided. The optical head comprises a reflective diffuser and a reflector disposed to face the reflective diffuser. The reflective diffuser is disposed in an optical path of the incident light and shields the reflector from the incident light. The reflective diffuser converts the incident light to scattered light having a Lambertian pattern. The reflector has an optical output section that transmits the scattered light and a reflective section that reflects the scattered light to the reflective diffuser and/or the other portions of the reflective sections. An optical system using the optical head is also provided.
Abstract:
An optical head for receiving an incident light is provided. The optical head comprises a reflective diffuser and a reflector disposed to face the reflective diffuser. The reflective diffuser is disposed in an optical path of the incident light and shields the reflector from the incident light. The reflective diffuser converts the incident light to scattered light having a Lambertian pattern. The reflector has an optical output section that transmits the scattered light and a reflective section that reflects the scattered light to the reflective diffuser and/or the other portions of the reflective sections. An optical system using the optical head is also provided.
Abstract:
An optical head for receiving incident light is provided. The optical head comprises a transmissive cosine corrector and a reflector disposed to face the transmissive cosine corrector. The transmissive cosine corrector is disposed in an optical path of the incident light and shields the reflector from the incident light. The transmissive cosine corrector converts the incident light to scattered light having a Lambertian pattern. The reflector has an optical output section that transmits the scattered light and a reflective section that reflects the scattered light to the transmissive cosine corrector and/or the other portions of the reflective sections. An optical system using the optical head is also provided.
Abstract:
A spectrometer includes an input unit for receiving an optical signal, a diffraction grating disposed on the transmission path of the optical signal for dispersing the optical signal into a plurality of spectral rays, an image sensor disposed on the transmission path of at least a portion of the spectral rays, and a waveguide device. A waveguide space is formed between the first and second reflective surfaces of the waveguide device. The optical signal is transmitted from the input unit to the diffraction grating via the waveguide space. The portion of the spectral rays is transmitted to the image sensor via the waveguide space. At least one opening is formed on the waveguide device, and is substantially parallel to the first and/or second reflective surface. A portion of the spectral rays and/or the optical signal diffuses from the opening out of the waveguide space without reaching the image sensor.
Abstract:
An optical calibration method for a spectrum measurement device including a light-input part includes: measuring a plurality of narrow-band rays by the light-input part to obtain a plurality of narrow-band spectrum impulse responses, respectively; establishing a stray light database according to the narrow-band spectrum impulse responses; generating a correction program according to the stray light database; measuring a spectral radiant standard light by the light-input part to obtain measurement spectrum data; and generating a calibration coefficient program based on the measurement spectrum data and spectral radiant standard spectrum data, wherein the calibration coefficient program matches the measurement spectrum data with the spectral radiant standard spectrum data, and the spectral radiant standard spectrum data is obtained by measuring the spectral radiant standard light by a standard spectrum measurement device. A spectrum measurement device, an optical measurement method and an optical calibration method are also provided.
Abstract:
The present application discloses an optical sensing module, an optical mechanism of a spectrometer, and a spectrometer. An optical sensing module according to one embodiment comprises an optical sensing component and an optical fiber. The optical sensing component includes at least a row of optical sensing units. The optical fiber is made of a transparent material and has a cylindrical curved surface. A side of the cylindrical curved surface faces the optical sensing units to converge at least a portion of an incident light received by the optical sensing units. With techniques of the present application, the amount of light collected at the optical sensing component can be increased for it to be suitable for applications such as miniaturized apparatuses and systems, thus improving the overall efficiency of optical reception and utilization therein.
Abstract:
An optical filtering assembly comprises a first interference film and a second interference film. The first interference film comprises multiple first film layers and multiple second film layers. The first film layers and the second film layers are alternately stacked. The second interference film comprises multiple third film layers and multiple fourth film layers. The third film layers and the fourth film layers are alternately stacked. An optical constant of the first film layers is same as an optical constant of the third film layers, and an optical constant of the second film layers is same as an optical constant of the fourth film layers, and an Optical Path Difference (OPD) produced in the first interference film is different from an OPD produced in the second interference film.