Abstract:
A spot shape detection apparatus for detecting the spot shape of a laser beam oscillated from a laser oscillator includes: a focusing leans for focusing the laser beam oscillated by the oscillator; a rotary body (mirror holder) in which a plurality of mirrors for reflecting the laser beam having passed through the focusing lens are disposed on concentric circles; a drive source (motor) for rotating the rotary body at a predetermined period; a beam splitter for branching return beams of the laser beam reflected by the plurality of mirrors of the rotary body; an imaging unit which is disposed in a direction in which the return beams are branched by the beam splitter and which images spot shapes of the return beams; and a display unit for displaying images obtained by imaging by the imaging unit, in relation with the plurality of mirrors.
Abstract:
Polaritonic hot electron infrared photodetector that detect infrared radiation. In one implementation, the polaritonic hot electron infrared photodetector includes a first contact layer, a second contact layer, a first dielectric layer, a second dielectric layer, and a conductor layer. The first dielectric layer is coupled between the first contact layer and the second contact layer. The second dielectric layer is coupled between the first dielectric layer and the second contact layer. The conductor layer is coupled between the first dielectric layer and the second dielectric layer. Infrared radiation incident upon the conductor layer is operable to create hot carriers that are injected from a conduction band of the conductor layer to a conduction band of the second contact layer.
Abstract:
The present invention relates to an apparatus for detecting photons according to an atmospheric condition, using a function of adjusting light quantity that can significantly improve reliability of an atmospheric condition analysis result by minimizing noise in a spectrum by maintaining the quantity of incident light uniform within a predetermined range regardless of atmospheric conditions and changes, and to a method of adjusting light quantity. The apparatus for detecting photons in accordance with atmospheric conditions using a function of adjusting light quantity includes: an apparatus case having a light inlet; a light quantity adjuster disposed under the light inlet and adjusting quantity of incident light such that a predetermined quantity of light travels inside; and a controller controlling operation of the light quantity adjuster in accordance with intensity of light detected by the light quantity adjuster.
Abstract:
An electronic device uses one or more infrared sensors to detect infrared light from a person's body (e.g., a user's finger) to initiate a function of the electronic device. According to an implementation, the housing of the electronic device includes a flexible portion that opens an aperture in response to external pressure (e.g., a user pressing down on the flexible portion) to allow infrared light from the person's body to reach an infrared sensor. When the infrared sensor detects the infrared light, it generates a signal in response. A processor of the electronic device receives the signal and, in response, initiates a function of the electronic device. The function may be any function that the electronic device is capable of performing, such as a power-on function, a camera function, changing the speaker volume, and launching an application.
Abstract:
A system and method for performing field measurement and testing of a plurality of widely spaced laser beams used in visual warning technology (VWT). VWT uses a combination of widely spaced laser beams, to warn civilians from approaching too close to military security areas. The widely spaced laser beams are displaced using rhomboidal prisms. Each rhomboidal prism receives a corresponding laser beam and displaces it toward a collecting lens. The lens focuses the displaced beams received thereon onto an imaging sensor for testing. Beam shutters may be used for selectively blocking one or more beams in order to test the beams separately and in different combinations.
Abstract:
In certain embodiments, a detection device includes a structure having an entrance that permits radiation to enter the structure and a radiation detector operable to detect radiation that enters the structure. The device also includes a microshutter array coupled to the structure and aligned with the entrance, the array comprising a plurality of microshutter cells operable to move between a first position in which that microshutter cell prevents radiation of a first wavelength from passing through a portion of the entrance and a second position in which that microshutter cell permits the radiation of the first wavelength to pass through the portion of the entrance. The device further includes an actuating device operable to define a first entrance pupil having a first f-number by moving a plurality of microshutter cells associated with the first f-number.
Abstract:
A method and apparatus for braking an AC motor in the higher portion of its speed range includes substantially reducing flux before applying reverse torque commands to brake the motor. A DC link bus regulator is employed to prevent increases in bus voltage and frequency.
Abstract:
There is disclosed an optical radiation sensor system. The system includes a sensor device and a cleaning device. The sensor device detects and responds to radiation from a radiation field and includes a surface that is movable with respect to the radiation field between a first position in which the surface is in the radiation field and a second position in which at least a portion of the surface is out of the radiation field. The cleaning device operates to remove fouling materials from at least a portion of the surface in the second position. The cleaning device may be a chemical cleaning device, a mechanical cleaning device or a combined chemical/mechanical device.
Abstract:
Radiation receiver with a photodetector and a sensor, wherein the sensor receives the radiation intensity, and a shutter arranged before the photodetector is driven in dependence on the detected incident radiation intensity. The incident radiation is supplied to the photodetector via a delay device arranged before the shutter, so that no radiation destroying the photodetector can reach the photodetector, due to the shutter having been driven, and can if necessary be kept away or absorbed by the shutter.
Abstract:
A device for controlling an amount of light of a lighting unit for use in an endoscope that is used to view an image of an object. A light shielding system shields light generated by a light source and transmitted to the endoscope and a stepping motor drives the light shielding system for a plurality of predetermined time intervals. A system detects a brightness of the image during each of the plurality of predetermined time intervals and an input system inputs one of a plurality of desired brightnesses of the image. A generating system generates a predetermined number of pulses during each of the plurality of predetermined time intervals, the predetermined number of pulses being transmitted to the stepping motor and a system determines an angular position of the light shielding system. A setting system sets one of a plurality of allowed brightness ranges of the image in response to the determined angular position of the light shielding system and a system determines whether the detected brightness is within the set one of the plurality of allowed brightness ranges.