摘要:
The present invention provides a method for detecting a biologically active substance that affects intracellular processes mediated through a protein kinase or second messenger, which comprises incubating a cell with a test substance and measuring any change caused by the test substance in the fluorescence of (i) green fluorescent protein (GFP) having a protein kinase recognition site or (ii) GFP that has been modified to contain a second messenger binding domain.
摘要:
The present invention relates to a method of detecting biologically active substances affecting intracellular processes, an isolated DNA, a vector and a cell for use in the method. More specifically, the present invention provides a method for detecting a biologically active substance that affects intracellular processes mediated through a protein kinase or a second messenger, which comprises incubating a cell with a test substance and measuring any change caused by the test substance in the flourescence of (i) a wild-type or modified green flourescent protein (GFP) having a protein kinase recognition site, (ii) a modified GFP containing a second messenger binding domain, or (iii) a hybrid polypeptide having a wild-type or modified GFP and an attached protein kinase recognition site or a second messenger binding domain.
摘要:
The present invention relates to methods for identifying compounds capable of modulating a cellular response. The methods involve attaching living cells to solid supports comprising a library of test compounds. The test compounds are linked to the solid support via cleavable linkers and may thus be released from the solid supports. Solid supports comprising cells, wherein the cellular response of interest has been modulated are selected and the test compound of the solid support can then be identified. The cellular response may for example be changes in complex formation between proteins.
摘要:
The present invention relates to compounds capable of inhibiting binding of the Smac protein to Inhibitors of apoptosis (IAPs). Such compounds are preferably capable of inhibiting IAP and thus may promote apoptosis or sensitize cells for apoptosis. The compounds may be used in the treatment of proliferative diseases, such as cancer.
摘要:
Cells are genetically modified to express a luminophore, e.g., a modified (F64L, S65T, Y66H) Green Fluorescent Protein (GFP, EGFP) coupled to a component of an intracellular signalling pathway such as a transcription factor, a cGMP- or cAMP-dependent protein kinase, a cyclin-, calmodulin- or phospholipid-dependent or mitogen-activated serine/threonin protein kinase, a tyrosine protein kinase, or a protein phosphatase (e.g. PKA, PKC, Erk, Smad, VASP, actin, p38, Jnk1, PKG, IkappaB, CDK2, Grk5, Zap70, p85, protein-tyrosine phosphatase 1C, Stat5, NFAT, NFkappaB, RhoA, PKB). An influence modulates the intracellular signalling pathway in such a way that the luminophore is being redistributed or translocated with the component in living cells in a manner experimentally determined to be correlated to the degree of the influence. Measurement of redistribution is performed by recording of light intensity, fluorescence lifetime, polarization, wavelength shift, resonance energy transfer, or other properties by an apparatus consisting of e.g. a fluorescence microscope and a CCD camera. Data stored as digital images are processed to numbers representing the degree of redistribution. The method can be used as a screening program for identifying a compound that modulates a component and is capable of treating a disease related to the function of the component.
摘要:
A GFP with an F64L mutation and an E222G mutation is provided. This GFP has a bigger Stokes shift compared to other GFPs making it very suitable for high throughput screening due to a better resolution. This GFP also has an excitation maximum between the yellow GFP and the cyan GFP allowing for cleaner band separation when used together with those GFPs.
摘要:
The present invention provides methods for identifying candidate drugs that modulate factor VIIa-mediated intracellular signaling by measuring the effects of such drugs on the activation of the mitogen-activated protein kinase (MAP kinase) signaling pathway.