摘要:
An integrated circuit is capable of controlling a communication signal by using power ramp controlled communication buffer logic to generate an outgoing communication signal based on a detected voltage on a voltage source. The voltage source is necessary to supply power for power ramp controlled communication buffer logic. The voltage on the voltage source may be detected using power ramp sensor logic. The outgoing communication signal is based on a core logic output signal if the detected voltage is greater than or equal to a predetermined voltage level. If, the detected voltage is less than the predetermined voltage level, the outgoing communication signal is predetermined to be one of: a tristate outgoing communication signal, a logic one outgoing communication signal and a logic zero outgoing communication signal. Power ramp controlled communication buffer logic may also generate a core logic input signal based on an incoming communication signal in response to the detected voltage.
摘要:
An integrated circuit is capable of controlling a communication signal by using power ramp controlled communication buffer logic to generate an outgoing communication signal based on a detected voltage on a voltage source. The voltage source is necessary to supply power for power ramp controlled communication buffer logic. The voltage on the voltage source may be detected using power ramp sensor logic. The outgoing communication signal is based on a core logic output signal if the detected voltage is greater than or equal to a predetermined voltage level. If, the detected voltage is less than the predetermined voltage level, the outgoing communication signal is predetermined to be one of: a tristate outgoing communication signal, a logic one outgoing communication signal and a logic zero outgoing communication signal. Power ramp controlled communication buffer logic may also generate a core logic input signal based on an incoming communication signal in response to the detected voltage.
摘要:
An input signal is routed to a first logic one reference signal generator or alternatively routed to a second logic one reference signal generator based at least one a voltage level of the input signal. When the voltage level of the input signal is less than a threshold value, the first logic one reference signal generator selectively generates a first logic one reference signal. When the voltage level of the input signal is greater than or equal to the threshold value, the second logic one reference signal generator alternatively generates a second logic one reference signal. The first and second logic one reference signals may be used to control a first voltage scaling circuit that drives a scaled output signal having a logic one value corresponding to the voltage level of the first logic one reference signal.
摘要:
An input signal is routed to a first logic one reference signal generator or alternatively routed to a second logic one reference signal generator based at least one a voltage level of the input signal. When the voltage level of the input signal is less than a threshold value, the first logic one reference signal generator selectively generates a first logic one reference signal. When the voltage level of the input signal is greater than or equal to the threshold value, the second logic one reference signal generator alternatively generates a second logic one reference signal. The first and second logic one reference signals may be used to control a first voltage scaling circuit that drives a scaled output signal having a logic one value corresponding to the voltage level of the first logic one reference signal.
摘要:
An input signal is routed to a first logic one reference signal generator or alternatively routed to a second logic one reference signal generator based at least one a voltage level of the input signal. When the voltage level of the input signal is less than a threshold value, the first logic one reference signal generator selectively generates a first logic one reference signal. When the voltage level of the input signal is greater than or equal to the threshold value, the second logic one reference signal generator alternatively generates a second logic one reference signal. The first and second logic one reference signals may be used to control a first voltage scaling circuit that drives a scaled output signal having a logic one value corresponding to the voltage level of the first logic one reference signal.
摘要:
An input signal is routed to a first logic one reference signal generator or alternatively routed to a second logic one reference signal generator based at least one a voltage level of the input signal. When the voltage level of the input signal is less than a threshold value, the first logic one reference signal generator selectively generates a first logic one reference signal. When the voltage level of the input signal is greater than or equal to the threshold value, the second logic one reference signal generator alternatively generates a second logic one reference signal. The first and second logic one reference signals may be used to control a first voltage scaling circuit that drives a scaled output signal having a logic one value corresponding to the voltage level of the first logic one reference signal.
摘要:
An IO method and system for bit-deskewing are described. Embodiment includes a computer system with multiple components that transfer data among them. In one embodiment, a system component receives a forward strobe signal and multiple data bit signals from a transmitting component. The receiving component includes a forward strobe clock recovery circuit configurable to align a forward strobe sampling clock so as to improve sampling accuracy. The receiving component further includes at least one data bit clock recovery circuit configurable to align a data bit sampling clock so as to improve sampling accuracy, and to receive a signal from the forward strobe clock recovery circuit that causes the data bit sampling clock to track the forward strobe sampling clock during system operation.
摘要:
An ultra-low power crystal oscillator architecture that draws less than 2 μA during steady state operation. An amplifier stage is self biased and has input and output clamp circuits that limit its signal swing. Circuit values are selected such that there is sufficient transient load current for the first amplifier stage to oscillate, while at the same time the input and output clamp circuits maintain a sufficiently low swing of the stage such that the steady state average load current is on the order of less than 1 μA.
摘要:
An ultra-low power crystal oscillator architecture that draws less than 2 μA during steady state operation. An amplifier stage is self biased and has input and output clamp circuits that limit its signal swing. Circuit values are selected such that there is sufficient transient load current for the first amplifier stage to oscillate, while at the same time the input and output clamp circuits maintain a sufficiently low swing of the stage such that the steady state average load current is on the order of less than 1 μA.
摘要:
A circuit includes a complementary current mode logic driver circuit and a dual feedback current mode logic bias circuit. The complementary current mode logic driver circuit provides a first output voltage and a second output voltage. The dual feedback current mode logic bias circuit includes a first feedback circuit and a second feedback circuit. The first feedback circuit provides a first bias voltage for the complementary current mode logic driver circuit in response to the first output voltage. The second feedback circuit provides a second bias voltage in response to the second output voltage.