摘要:
One embodiment of a system includes a sophisticated volume hologram for dispersing an incident optical signal with uniform spectrum over an input plane to an output pattern with non-uniform spatial-spectral information, where the sophisticated volume hologram includes a plurality of holograms that map different input wavelengths into a diverse spatial pattern. The system further includes a detector for receiving and detecting light dispersed by the sophisticated volume hologram. Other systems and methods are also provided.
摘要:
In one embodiment, an optical lens assembly comprising a primary lens and an optical structure located at an outer portion of the lens is disclosed. The primary lens is configured to direct a substantial amount of light to a predetermined first distance whereas the optical structure is configured to direct light towards a second distance that is relatively close to the optical lens assembly compared to the first distance. Other embodiments disclose light-emitting devices and proximity sensors having such an optical lens assembly. Alternative embodiments of the optical lens assembly are disclosed, including but not limited to an optical structure defining an optical surface located at a lens flange and optical structure defining a light guide located at a base portion of the optical lens assembly.
摘要:
Disclosed are various embodiments of a navigation input device, and methods, systems and components corresponding thereto. According to some embodiments, the navigation input device has a large depth of field associated therewith and employs time- and/or frequency-domain processing algorithms and techniques. The device is capable of providing accurate and reliable information regarding the (X,Y) position of the device on a navigation surface as it is moved laterally thereatop and thereacross, notwithstanding changes in a vertical position of the device that occur during navigation and that do not exceed the depth of field of an imaging lens incorporated therein. According to one embodiment, the navigation input device is a writing instrument that does not require the use of an underlying touch screen, touch pad or active backplane to accurately and reliably record successive (X,Y) positions of the writing device as it is moved across and atop an underlying writing medium.
摘要:
An optical finger navigation device includes a navigation cover. The navigation cover includes a tracking surface and an illumination surface. The tracking surface exhibits a first light reflection characteristic in a presence of a navigation object at the tracking surface and a second light reflection characteristic in an absence of the navigation object at the tracking surface. A light source generates illumination directed toward the illumination surface of the navigation cover. A redirection structure is interposed between the light source and the illumination surface of the navigation cover. A reflection surface of the first redirection structure is approximately facing the illumination surface of the navigation cover. An illumination surface of the redirection structure is approximately facing the light source. The redirection structure defines at least one hole therethrough to pass light generated by the light source toward the illumination surface of the navigation cover.
摘要:
Systems and methods for performing two-dimensional (2D) high resolution spectral-spatial mapping are described. At least one embodiment includes a spectrometer for performing two-dimensional (2D) high resolution spectral-spatial mapping comprising a Fabry-Perot component configured to receive a diffuse input beam and provide a high resolution spectral mapping of the diffuse input beam in a first direction. The spectrometer further comprises a volume hologram for increasing a spectral operating range, the volume hologram configured to perform spectral mapping in a second direction orthogonal to the first direction to increase the spectral operating range. The spectrometer further comprises a charged coupled device (CCD) configured to receive output beams, the output beams used to provide spectral analysis of the input beams.
摘要:
One embodiment of a lens-less system for analyzing an optical spectrum includes a sophisticated volume hologram for separating an incident diffuse optical signal into wavelength channels without aid of an external collector lens and a detector for receiving and detecting light dispersed by the sophisticated volume hologram. Other systems and methods are also provided.
摘要:
In one embodiment, an optical lens assembly comprising a primary lens and an optical structure located at an outer portion of the lens is disclosed. The primary lens is configured to direct a substantial amount of light to a predetermined first distance whereas the optical structure is configured to direct light towards a second distance that is relatively close to the optical lens assembly compared to the first distance. Other embodiments disclose light-emitting devices and proximity sensors having such an optical lens assembly. Alternative embodiments of the optical lens assembly are disclosed, including but not limited to an optical structure defining an optical surface located at a lens flange and optical structure defining a light guide located at a base portion of the optical lens assembly.
摘要:
An optical finger navigation device includes an image sensor, a tracking surface, and an optical element. The image sensor generates an image representative of light detected at a pixel array that has a pixel pitch which at least partially defines a surface area of a pixel. The tracking surface is approximately parallel to the image sensor. A first distance between and substantially orthogonal to planes of the tracking surface and the image sensor is insufficient under a set of illumination constraints to produce at the image sensor a speckle size above a threshold. The threshold is approximately one order of magnitude less than the pixel pitch. The optical element is interposed between the tracking surface and the image sensor. The optical element includes at least one optical redirection surface to redirect light along an optical path of a second distance between the tracking surface and the image sensor.
摘要:
A system for optical navigation includes a light source and an imaging system. The light source illuminates a navigation surface. The navigation surface reflects light from the light source. The imaging system is located approximately within a path of the reflected light. The imaging system includes a lens, a mask, and an image sensor. The lens receives reflected light from the navigation surface. The lens focuses a specular portion of the reflected light to a focus region. The mask is located at approximately the focus region. The mask filters out substantially all of the specular portion of the reflected light and passes at least some of a scatter portion of the reflected light outside of the focus region. The image sensor generates a navigation signal based on the scattered portion of the light that passes outside the focus region and is incident on the image sensor.
摘要:
Disclosed are various embodiments of a navigation input device, and methods, systems and components corresponding thereto. According to some embodiments, the navigation input device has a large depth of field associated therewith and employs time- and/or frequency-domain processing algorithms and techniques. The device is capable of providing accurate and reliable information regarding the (X,Y) position of the device on a navigation surface as it is moved laterally thereatop and thereacross, notwithstanding changes in a vertical position of the device that occur during navigation and that do not exceed the depth of field of an imaging lens incorporated therein. According to one embodiment, the navigation input device is a writing instrument that does not require the use of an underlying touch screen, touch pad or active backplane to accurately and reliably record successive (X,Y) positions of the writing device as it is moved across and atop an underlying writing medium such as paper, a pad or a display.