摘要:
Systems for improving radio reception on a mobile device are provided. In exemplary embodiments, the system comprises a headset apparatus having a plurality of antenna elements. In exemplary embodiments, the plurality of antenna elements may be positioned in such a manner as to result in low-correlation between the plurality of antenna elements. For example, at least one of the antenna elements may be vertically oriented near a plug of the headset apparatus. Further antenna elements may be oriented vertically, horizontally, or both near an earpiece of the headset apparatus or above a juncture where a left and right cord of the headset apparatus splits. Exemplary embodiments may also comprise a receiving device configured to receive RF signals from the plurality of antenna elements and process these signals for playback on the headset apparatus.
摘要:
Systems and methods for providing a low power receiver device using fine grained time division are provided. In one embodiment, the receiver device comprises a tuner, a demodulator configured to demodulate at least one sampled signal, a payload processor configured to process at least one demodulated signal into an output format, and a time division control logic configured to generate a control signal to switch at least one component within the receiver device between modes to conserve power. The at least one component may be switched between an active mode, a standby mode, a power off mode, and a low power mode. In further embodiments, the at least one component may be switched between staggered modes.
摘要:
Digital logic circuitry is disclosed. The circuitry includes local oscillator drift and phase compensation logic that compensates the frequency drift and the phase noise of a local oscillator generated by a digitally controlled oscillator.
摘要:
Systems and methods for providing a low power receiver device using fine grained time division are provided. In one embodiment, the receiver device comprises a tuner, a demodulator configured to demodulate at least one sampled signal, a payload processor configured to process at least one demodulated signal into an output format, and a time division control logic configured to generate a control signal to switch at least one component within the receiver device between modes to conserve power. The at least one component may be switched between an active mode, a standby mode, a power off mode, and a low power mode. In further embodiments, the at least one component may be switched between staggered modes.
摘要:
A system for outputting a broadband signal outputs a number of input channel streams. The input channel streams first arrive at the system in a digital format. There the input channel streams are each directed to a modulator circuit. Each particular modulator circuit produces a digital upconverted signal for the associated channel streams. The outputs of the modulators are coupled to a summer circuit. Accordingly the summer circuit digitally sums the outputs of the modulator circuits. The summer circuit is coupled to a digital to analog converter (DAC). The DAC produces an analog signal from the digitally summed output of the summer circuit. The DAC is in turn coupled to an upconverter. The upconverter upconverts the analog output of the DAC into an output signal centered on a particular frequency.
摘要:
Systems and methods for dynamically controlling an analog-to-digital converter (ADC) in order to conserve power are provided. In exemplary embodiments, a receiver device comprises a tuner configured to receive a signal, at least one programmable analog-to-digital converter (ADC), and a digital signal processing hardware comprising a control logic. The exemplary control logic is configured to generate a control signal to configure components within the receiver device to conserve power at the ADC.
摘要:
Systems and methods for providing a low power receiver device using fine grained time division are provided. In one embodiment, the receiver device comprises a tuner, a demodulator configured to demodulate at least one sampled signal, a payload processor configured to process at least one demodulated signal into an output format, and a time division control logic configured to generate a control signal to switch at least one component within the receiver device between modes to conserve power. The at least one component may be switched between an active mode, a standby mode, a power off mode, and a low power mode. In further embodiments, the at least one component may be switched between staggered modes.
摘要:
For each audio and data service, a table of contents (TOC) specifies which logical channel may carry data. The TOC may be transmitted over the NRSC-5 transmission system using a pre-defined protocol, which is received and decoded at an NRSC-5 receiver apparatus that extracts the TOC. When a user or an application requests a specific service from the receiver, the receiver logic may examine the TOC and may identify which LC may carry the requested service data. The receiver may only decode the LCs that are needed for the requested service, and may not decode other unneeded LCs thereby conserving power and memory.
摘要:
A signal transmitter for sending a radio signal is made up of an input for receiving input data and a first circuit for generating an inphase signal and a quadrature signal from the input data. A second circuit produces a first signal associated with a cosine of a first frequency and a third circuit that produces a second signal associated with a sine of the first frequency. A first modulator, coupled to the first circuit and the second circuit, upconverts the inphase signal with the first signal and produces a first upconverted signal. A second modulator, coupled to the first circuit and the third circuit, upconverts the inphase signal with the second signal and produces a second upconverted signal. A third modulator, coupled to the first circuit and the second circuit, upconverts the quadrature signal with the first signal and produces a third upconverted signal. A fourth modulator, coupled to the first circuit and the third circuit, upconverts the quadrature signal with the second signal and produces a fourth upconverted signal. A fourth circuit, coupled to the first and fourth modulators, combines the first upconverted signal and the fourth upconverted signal into a first intermediate signal. A fifth circuit, coupled to the second and third modulators, combines an inverse of the second upconverted signal and the third upconverted signal into a second intermediate signal. A quadrature modulator, coupled to the fourth circuit and the fifth circuit, converts the first intermediate signal and the second intermediate signal to an output signal. The output signal has a component at a first sideband of a second frequency, the first sideband frequency offset from the second frequency by a first amount. A filter, coupled to the quadrature modulator, passes the first sideband, and filters the second frequency and a second sideband, the second sideband offset from the second frequency by the inverse of the first amount.
摘要:
Systems and methods for providing a low power receiver device using fine grained time division are provided. In one embodiment, the receiver device comprises a tuner, a demodulator configured to demodulate at least one sampled signal, a payload processor configured to process at least one demodulated signal into an output format, and a time division control logic configured to generate a control signal to switch at least one component within the receiver device between modes to conserve power. The at least one component may be switched between an active mode, a standby mode, a power off mode, and a low power mode. In further embodiments, the at least one component may be switched between staggered modes.