摘要:
An object of the present invention is to provide a current collector which can decrease the internal resistance of a non-aqueous electrolyte battery, be used suitably for a non-aqueous electrolyte battery such as a lithium ion secondary battery and the like or for an electrical storage device such as a lithium ion capacitor and the like, and improve high rate characteristics. According to the present invention, a current collector which is structured by forming a resin layer possessing conductivity on at least one side of a conductive substrate is provided. The resin layer contains a chitosan-based resin and a conductive material, and the water contact angle of the surface of the resin layer measured by θ/2 method in a thermostatic chamber at 23° C. is 5 degrees or more and 60 degrees or less. In addition, an electrode structure, a non-aqueous electrolyte battery, and an electrical storage device which use the current collector are provided.
摘要:
Provided is a technique to confirm the performance of the conductive resin layer of a current collector without actually preparing an electrode structure, a non-aqueous electrolyte battery, an electrical double layer capacitor, a lithium ion capacitor, or an electrical storage device, and to confirm the performance of the conductive resin layer easily with high accuracy by a non-destructive test. A current collector includes a conductive substrate and a resin layer possessing conductivity, the resin layer being formed on at least one side of the conductive substrate. The resin layer possessing conductivity contains a resin and a conductive material containing carbon as a main component. When the color tone of the surface of the resin layer possessing conductivity is specified with L*a*b* color system, L* is 60 or lower, a* is −1.0 to 1.0, and b* is −1.0 to 3.0.
摘要翻译:本发明提供确认集电体的导电性树脂层的性能而不实际制备电极结构,非水电解质电池,双电层电容器,锂离子电容器或蓄电装置的技术, 通过非破坏性试验,以高精度容易地确认导电性树脂层的性能。 集电体包括导电基板和具有导电性的树脂层,树脂层形成在导电基板的至少一侧上。 具有导电性的树脂层包含树脂和以碳为主要成分的导电材料。 当具有导电性的树脂层的表面的色调用L * a * b *色系指定时,L *为60以下,a *为-1.0〜1.0,b *为-1.0〜3.0。
摘要:
An object of the present invention is to provide a current collector which can decrease the internal resistance of a non-aqueous electrolyte battery, be used suitably for a non-aqueous electrolyte battery such as a lithium ion secondary battery and the like or for an electrical storage device such as a lithium ion capacitor and the like, and improve high rate characteristics. According to the present invention, a current collector which is structured by forming a resin layer possessing conductivity on at least one side of a conductive substrate is provided. The resin layer contains a chitosan-based resin and a conductive material, and the water contact angle of the surface of the resin layer measured by θ/2 method in a thermostatic chamber at 23° C. is 5 degrees or more and 60 degrees or less. In addition, an electrode structure, a non-aqueous electrolyte battery, and an electrical storage device which use the current collector are provided.
摘要:
An object of the present invention is to improve an adhesion between the surface of a conductive resin layer and an active material, which are provided to a current collector. Another object of the present invention is to improve a high rate characteristics or electrode lifetime of a non-aqueous electrolyte battery, an electrical double layer capacitor, a lithium ion capacitor and the like which uses the current collector. A current collector prepared by forming a resin layer possessing conductivity on a conductive substrate, is provided. A surface roughness Ra of the resin layer possessing conductivity is 0.1 μm or higher and 1.0 μm or lower. In addition, when a coating thickness of the resin layer possessing conductivity is taken as t [μm] and the average angle of inclination of the resin layer surface is taken as θa [degree], (⅓)t+0.5≦θa≦(⅓)t+10 is met.
摘要:
Provided is a technique to confirm the performance of the conductive resin layer of a current collector without actually preparing an electrode structure, a non-aqueous electrolyte battery, an electrical double layer capacitor, a lithium ion capacitor, or an electrical storage device, and to confirm the performance of the conductive resin layer easily with high accuracy by a non-destructive test. A current collector includes a conductive substrate and a resin layer possessing conductivity, the resin layer being formed on at least one side of the conductive substrate. The resin layer possessing conductivity contains a resin and a conductive material containing carbon as a main component. When the color tone of the surface of the resin layer possessing conductivity is specified with L*a*b* color system, L* is 60 or lower, a* is −1.0 to 1.0, and b* is −1.0 to 3.0.
摘要:
A current collector which is suitable for discharging and charging at a large current density is provided. The present invention provides a current collector including a conductive substrate and a conductive resin layer provided on one side or both sides of the conductive substrate. The conductive resin layer contains a soluble nitrocellulose-based resin and a conductive material.
摘要:
A current collector which is suitable for discharging and charging at a large current density is provided. The present invention provides a current collector including a conductive substrate and a conductive resin layer provided on one side or both sides of the conductive substrate. The conductive resin layer contains a soluble nitrocellulose-based resin and a conductive material.
摘要:
An object of the present invention is to provide a current collector which includes an aluminum alloy foil for electrode current collector, with high electrical conductivity and high strength after a drying process performed after application of an active material. According to the present invention, provided is a current collector including a conductive substrate and a resin layer provided on one side or both sides of the conductive substrate, wherein: the conductive substrate is an aluminum alloy foil containing 0.03 to 1.0 mass % (hereinafter mass % is referred to as %) of Fe, 0.01 to 0.3% of Si, 0.0001 to 0.2% of Cu, with the rest being Al and unavoidable impurities, an aluminum alloy foil after a final cold rolling having a tensile strength of 180 MPa or higher, a 0.2% yield strength of 160 MPa or higher, and an electrical conductivity of 58% IACS or higher; an aluminum alloy foil after performing a heat treatment at 120° C. for 24 hours, at 140° C. for 3 hours, or at 160° C. for 15 minutes after the final cold rolling having a tensile strength of 170 MPa or higher, and a 0.2% yield strength of 150 MPa or higher; the resin layer includes a resin containing an acryl-based resin, a soluble nitrocellulose-based resin or a chitosan-based resin, and a conductive material; and a water contact angle of the resin layer surface measured by θ/2 method in a thermostatic chamber at 23° C. is 30 degrees or more and 105 degrees or less when the resin is the acryl-based resin, 100 degrees of more and 110 degrees or less when the resin is the soluble nitrocellulose-based resin, and 20 degrees or more and 50 degrees or less when the resin is the chitosan-based resin.