摘要:
Stationary x-ray digital breast tomosynthesis systems and related methods are disclosed. According to one aspect, the subject matter described herein can include an x-ray tomosynthesis system having a plurality of stationary field emission x-ray sources configured to irradiate a location for positioning an object to be imaged with x-ray beams to generate projection images of the object. An x-ray detector can be configured to detect the projection images of the object. A projection image reconstruction function can be configured to reconstruct tomography images of the object based on the projection images of the object.
摘要:
Stationary x-ray digital breast tomosynthesis systems and related methods are disclosed. According to one aspect, the subject matter described herein can include an x-ray tomosynthesis system having a plurality of stationary field emission x-ray sources configured to irradiate a location for positioning an object to be imaged with x-ray beams to generate projection images of the object. An x-ray detector can be configured to detect the projection images of the object. A projection image reconstruction function can be configured to reconstruct tomography images of the object based on the projection images of the object.
摘要:
Methods, systems, and computer program products for binary multiplexing x-ray radiography are disclosed. According to one aspect, the subject matter described herein can include irradiating an object with composite x-ray beams including signals based on a predetermined binary transform. Further, the subject matter described herein can include detecting x-ray intensities associated with the signals of the composite x-ray beams. An inverse binary transform can be applied to the detected x-ray intensities associated with the signals of the composite x-ray beams to recover the signals of the composite x-ray beams.
摘要:
Methods, systems, and computer program products for multiplexing computed tomography are disclosed. According to one aspect, the subject matter described herein can include illuminating an object with a plurality of x-ray beams from a plurality of viewing angles, wherein each x-ray beam has a distinct waveform; detecting the x-ray intensities of the plurality of pulsed x-ray beams as a function of time, and extracting individual projection image data from the detected x-ray intensities based on the distinct waveforms of the x-ray beams for combining the projection image data to generate three-dimensional tomographic image data of the object.
摘要:
Methods, systems, and computer program products for multiplexing computed tomography are disclosed. According to one aspect, the subject matter described herein can include illuminating an object with a plurality of x-ray beams from a plurality of viewing angles, wherein each x-ray beam has a distinct waveform; detecting the x-ray intensities of the plurality of pulsed x-ray beams as a function of time, and extracting individual projection image data from the detected x-ray intensities based on the distinct waveforms of the x-ray beams for combining the projection image data to generate three-dimensional tomographic image data of the object.
摘要:
Computed tomography device comprising an x-ray source and an x-ray detecting unit. The x-ray source comprises a cathode with a plurality of individually programmable electron emitting units that each emit an electron upon an application of an electric field, an anode target that emits an x-ray upon impact by the emitted electron, and a collimator. Each electron emitting unit includes an electron field emitting material. The electron field emitting material includes a nanostructured material or a plurality of nanotubes or a plurality of nanowires. Computed tomography methods are also provided.
摘要:
Systems and methods for x-ray imaging and scanning of objects are disclosed. According to one aspect, the subject matter described herein can include providing an x-ray source configured to generate a plurality of individually-controllable x-ray beams, positioning an object to be imaged in a path for intercepting at least one of the x-ray beams, activating the x-ray source, detecting intensities of the emitted x-ray beams, and generating imaging data based on the intensities for constructing an image of the object.
摘要:
An x-ray generating device includes at least one field-emission cold cathode having a substrate and incorporating nanostructure-containing material including carbon nanotubes. The device further includes at least one anode target. Associated methods are also described.
摘要:
Computed tomography scanning systems and methods using a field emission x-ray source are disclosed. An exemplary micro-computed tomography scanner comprises a micro-focus field emission x-ray source, an x-ray detector, an object stage placed between the x-ray source and the detector, an electronic control system and a computer that control the x-ray radiation and detector data collection, and computer software that reconstructs the three dimension image of the object using a series of projection images collected from different projection angles. Exemplary methods obtain a computed tomography image of an object in oscillatory motion using the micro computed tomography scanner.
摘要:
A structure to generate x-rays has a plurality of stationary and individually electrically addressable field emissive electron sources with a substrate composed of a field emissive material, such as carbon nanotubes. Electrically switching the field emissive electron sources at a predetermined frequency field emits electrons in a programmable sequence toward an incidence point on a target. The generated x-rays correspond in frequency and in position to that of the field emissive electron source. The large-area target and array or matrix of emitters can image objects from different positions and/or angles without moving the object or the structure and can produce a three dimensional image. The x-ray system is suitable for a variety of applications including industrial inspection/quality control, analytical instrumentation, security systems such as airport security inspection systems, and medical imaging, such as computed tomography.