Abstract:
An optical touch device with a detecting area includes light guide components, a light source module, a light detecting component and an auxiliary light guide component. Each light guide component includes a first light emitting surface. The light guide components includes a first light guide component and a second light guide component. The auxiliary light guide component and the light detecting component are disposed between two neighboring ends of the first light guide component and the second light guide component, and the light detecting component includes a light detecting end. The auxiliary light guide component is positioned between the light detecting component and the detecting area and includes a first light incidence surface, a second light incidence surface and a second light emitting surface connected between the first light incidence surface and the second light incidence surface. The optical touch device can effectively avoid the blind zone problem.
Abstract:
In the present invention, an anti-pinch device which uses a simple optical mechanism to prevent the user being hurt by the moving part before the moving part touches the user is disclosed. Also, a space computing device which uses a simple optical mechanism to compute acquired space of a target object is disclosed. Additionally, a hovering control device which uses a simple optical mechanism thereby the user can control the hovering control device without touching the hovering control device is disclosed. The optical mechanism comprises at least one light source and at least one optical sensor, which can arrange in various ways.
Abstract:
The present invention discloses embodiments for an optical touch systems and methods. One embodiment of the present invention is directed to an optical touch system that includes at least two image sensors configured to detect a plurality of objects over a touch surface to generate a plurality of object images; a plurality of first light receiving elements, wherein the first light receiving elements are arranged on a side of the touch surface along a first direction and are configured to detect the objects; and a processing unit configured to calculate a plurality of candidate coordinate data, based on the object images, and select the coordinate data that represents coordinate data of the objects from the candidate coordinate data, based on detection data of the first light receiving elements.
Abstract:
The present invention provides an image data sensing system comprising a controller and at least one image sensor connected in series. The controller comprises a control input port and a control output port. The controller transmits a command signal or a synchronizing signal to all image sensors via the control output port, and the image sensor transmits image data to the controller via the control input port. By this way, the number for the ports of the controller can be decreased. The present invention further provides a mechanism that the image sensor can operate at different timings if a number of the image sensor is more than one. The present invention also provides relative image sensing methods.
Abstract:
A method of calculating a coordinate of a touch medium is disclosed in the present invention. The method includes obtaining a first image to determine whether the first image overlaps a first threshold, generating a first interceptive boundary when the first image overlaps the first threshold, obtaining a second image to generate a second interceptive boundary by overlap of the second image and a second threshold, determining whether the first interceptive boundary overlaps the second interceptive boundary, and confirming a status of the touch medium according to determination.
Abstract:
The present invention discloses embodiments for an optical touch systems and methods. One embodiment of the present invention is directed to an optical touch system that includes at least two image sensors configured to detect a plurality of objects over a touch surface to generate a plurality of object images; a plurality of first light receiving elements, wherein the first light receiving elements are arranged on a side of the touch surface along a first direction and are configured to detect the objects; and a processing unit configured to calculate a plurality of candidate coordinate data, based on the object images, and select the coordinate data that represents coordinate data of the objects from the candidate coordinate data, based on detection data of the first light receiving elements.
Abstract:
A method of calculating a coordinate of a touch medium is disclosed in the present invention. The method includes obtaining a first image to determine whether the first image overlaps a first threshold, generating a first interceptive boundary when the first image overlaps the first threshold, obtaining a second image to generate a second interceptive boundary by overlap of the second image and a second threshold, determining whether the first interceptive boundary overlaps the second interceptive boundary, and confirming a status of the touch medium according to determination.
Abstract:
A positioning module of calculating a coordinate of a touch medium is disclosed in the present invention. The positioning module includes at least one image detecting unit, a first light source, a second light source and a processor. The image detecting unit includes a lateral side and an upper side. The image detecting unit captures an image reflected from a reflection component. The first light source is disposed on the lateral side and outputs a first beam. The second light source is disposed on the upper side and outputs a second beam. The processor is electrically connected to the image detecting unit. The processor determines a touch status of the touch medium according to a first image generated by the first beam, and further determines a touch coordinate of the touch medium according to a second image generated by the second beam.
Abstract:
A positioning module of calculating a coordinate of a touch medium is disclosed in the present invention. The positioning module includes at least one image detecting unit, a first light source, a second light source and a processor. The image detecting unit includes a lateral side and an upper side. The image detecting unit captures an image reflected from a reflection component. The first light source is disposed on the lateral side and outputs a first beam. The second light source is disposed on the upper side and outputs a second beam. The processor is electrically connected to the image detecting unit. The processor determines a touch status of the touch medium according to a first image generated by the first beam, and further determines a touch coordinate of the touch medium according to a second image generated by the second beam.