Abstract:
Disclosed is an austenitic stainless steel with increased workability. The austenitic stainless steel includes, based on % by weight, silicon (Si): 0.1 to 0.65%, manganese (Mn): 0.2 to 3.0%, nickel (Ni): 6.5 to 10.0%, chromium (Cr): 16.5 to 20.0%, copper (Cu): 6.0% or less (excluding 0), the sum of carbon (C) and nitrogen (N): 0.08% or less (excluding 0), and the remainder being Fe and unavoidable impurities, wherein the austenitic stainless steel has a work hardening rate of 1500 MPa or less within a true strain range of 0.15 to 0.4. Therefore, when a sink bowl and the like are processed using the austenitic stainless steel, the true strain and work hardening rate of which are controlled, the occurrence of delayed fracture in a molded corner thereof, which has been subjected to a large amount of processing, can be prevented.
Abstract:
Austenitic stainless steels excellent in flexibility are provided. The austenitic stainless steel excellent in flexibility includes, by weight percent, 0.1 to 0.65% of Si, 1.0 to 3.0% of Mn, 6.5 to 10.0% of Ni, 16.5 to 18.5% of Cr, 6.0% or less of Cu (excluding 0), 0.13% or less of (C+N) (excluding 0), and the remainder including Fe and unavoidable impurities, wherein the work hardening formula H1 defined by the following formula is 300 or less. H1=−459+79.8Si−10.2Mn−8.16Ni+48.0Cr−13.2Cu+623(C+N).
Abstract:
A high-hardness martensitic stainless steel with excellent antibacterial property and a preparation method therefor are disclosed. The high-hardness martensitic stainless steel with excellent antibacterial property comprises: 0.45-0.65 wt % of C; 0.02-0.06 wt % of N; 0.1-0.6 wt % of Si; 0.3-1.0 wt % of Mn; 0.1-0.4 wt % of Ni; 13-14.5 wt % of Cr; 0.4-0.6 wt % of Mo; 0.8-1.2 wt % of W; 1.5-2.0 wt % of Cu; and the balance of Fe and inevitable impurities. According to the present disclosure, there is an advantage enabling the preparation of the martensitic stainless steel for knives, the martensitic stainless steel having high hardness, high corrosion resistance and excellent antibacterial property, by uniformly distributing fine chromium carbide and e-Cu precipitates in the microstructure of a batch annealed material of a high-carbon martensitic stainless steel containing Cu. In addition, there is an advantage of causing no rust formation on a material after an antibacterial evaluation.
Abstract:
A hot-rolled stainless steel sheet having excellent hardness and low-temperature impact properties, in which a ferrite is formed with martensite as a matrix structure, is manufactured by a steel manufacturing process, a continuous casting process, and a hot-rolling process. The hot-rolled stainless steel sheet comprises C, N, Si, Mn, Cr, Ni, Ti, Nb, Mo, and the remainder being Fe and other inevitable impurities, wherein C is 0.01 to 0.03 wt %, Cr is 11 to 14 wt %, Ti is 0.1 to 0.2 wt %, and Nb is 0.1 to 0.2 wt %. The ferrite stability (FS) expressed by the following [formula 1] is 5 to 50, and a ferrite is formed with martensite as a matrix structure. [Formula 1] 4 FS=−215−619C−16.6Mn+23.7Cr−36.8Ni+42.2Mo+96.2Ti+67Nb−237N+17.2Si, wherein the numerical value of each component described in [Formula 1] denotes the content (wt %) of each component.