Abstract:
A method of direct reduction of metal oxides that includes catalytic reforming of hydrocarbonaceous gas in a reformer to obtain reformer gas, obtaining at least one precursor gas based on the reformer gas, preparing a reduction gas by heating the at least one precursor gas by means of electrical energy, at least a portion of the electrical energy being introduced by means of plasma.
Abstract:
The invention relates to a process for producing carburized directly reduced iron sponge from iron oxide material. Firstly, direct reduction is carried out by means of a reduction gas consisting at least predominantly of H2 and the carbon content in the iron sponge is then increased by means of a carburizing gas which is fed in, after which used carburizing gas is at least partly taken off while largely avoiding mixing with the reduction gas. The plant for producing carburized directly reduced iron sponge from iron oxide material comprises a reduction zone for directly reducing introduced iron oxide material to directly reduced product by means of reduction gas consisting predominantly of H2 and a reduction gas feed conduit opening into the reduction zone. It also comprises a carburization zone having a carburizing gas feed conduit opening into the carburization zone and a carburization offgas conduit.
Abstract:
A method for the direct reduction of feedstock, containing metal-oxide, to form metallic material, by contact with hot reduction gas in a reduction assembly (1): the product of the direct reduction process is discharged from the reduction assembly by a product discharge apparatus, which is flushed with seal gas, drawn off from the vent gas and subsequently dedusted. At least one portion of the dedusted vent gas is used as a combustion energy source during the production of the reduction gas, and/or as a component of a furnace fuel gas during a combustion process for heating the reduction gas, and/or as a component of the reduction gas. Apparatus for carrying out the method is disclosed.
Abstract:
A method for reducing metal oxide containing charge materials (1): reducing the metal oxide containing charge materials (1) in at least two fluidized bed units (RA,RE) by means of a reduction gas (2), wherein at least some of the resulting off-gas (3) is recycled and wherein the metal oxide containing charge materials (1) are conveyed into the fluidized bed unit RE by a propellant gas. Also, apparatus for carrying out the method according to the invention is disclosed.
Abstract:
In a process and apparatus for the reduction of metal oxides to form metalized material by contact with hot reducing gas, which is produced at least partially by catalytic reformation of a mixture of—a gas containing carbon dioxide (CO2) and/or steam (H2O) with—gaseous hydrocarbons, the fuel gas for burners which provide the heat for the endothermal reformation processes which take place during the reformation is obtained at least partially from a partial quantity of the top gas produced during the reduction of metal oxides to form metalized material, wherein this partial quantity of the top gas, before it is used as a component of the fuel gas, is firstly subjected to dedusting and then to a CO conversion reaction, and the conversion gas obtained during the CO conversion reaction is subjected to CO2 removal after cooling.
Abstract:
The invention relates to a method for sealing a reduction assembly, wherein the reduction assembly has a product discharge device, wherein the product discharge device is supplied with sealing gas and wherein at least one compressor is provided for delivering prepared sealing gas to the product discharge device, wherein according to the invention, at least one nitrogen generator is provided for producing pure sealing gas, and wherein the sealing gas for supplying to the product discharge device is composed of pure sealing gas from the at least one nitrogen generator or composed of pure sealing gas from the at least one nitrogen generator and of prepared sealing gas from the at least one compressor. The invention also relates to a device with which the method according to the invention is carried out.
Abstract:
In a process and apparatus for the reduction of metal oxides (3) to form metalized material by contact with hot reducing gas, which is produced at least partially by catalytic reformation of a mixture of a gas containing carbon dioxide (CO2) and/or steam (H2O) with gaseous hydrocarbons, the heat for the endothermal reformation processes which take place during the reformation is provided at least partially by the combustion of a fuel gas.
Abstract:
A method and a device for reducing iron-oxide-containing feedstocks, in which a reducing gas is fed to a reducing unit (1) containing the iron-oxide-containing feedstocks. The reducing gas is generated by introducing a process gas having reduction potential into a heating appliance (3) for heating the process gas, which is withdrawn as reducing gas therefrom. In the heating appliance (3), heat energy is transferred to the process gas. The heat energy is formed by combustion of a fuel gas containing organic substances, including coke oven gas with addition of technically pure oxygen. The flames of the combustion have an adiabatic flame temperature of above 1000° C., wherein, in the combustion of the fuel gas, at least some of the organic substances present in the fuel gas are cracked.
Abstract:
A method for introducing fine particulate material (4) of ferruginous particles into a fluidized bed reduction unit (1) having a fluidized bed (24), wherein the temperature in the fluidized bed (24) is more than 300° C., and wherein the fine particulate material (4) is introduced directly into the fluidized bed (24) and/or into a free space (25) above the fluidized bed (24) by means of a burner (2). The method may be used for producing liquid pig iron (17) or liquid steel precursor products (18) by a smelting reduction process in a smelting reduction unit (22).
Abstract:
The invention relates to a method for reducing metal oxides to metallized material by means of contact with reduction gas, wherein an accumulated top gas is dry dedusted and reformed in a raw gas mixture together with gaseous hydrocarbons. The water vapor content of the dry dedusted top gas designated for the preparation of the raw gas mixture is adjusted in a saturator in the countercurrent by means of saturation water, wherein the temperature of the saturation water is adjusted, by mixing cold water with a hot water having a higher temperature than the cold water, in order to produce the saturation water at a target value. The invention further relates to a device for carrying out such a method, having corresponding conduits.