摘要:
One example of a solar voltaic concentrator has a primary Fresnel lens with multiple panels, each of which forms a Köhler integrator with a respective panel of a lenticular secondary lens. The resulting plurality of integrators all concentrate sunlight onto a common photovoltaic cell. Luminaires using a similar geometry are also described.
摘要:
One example of a solar voltaic concentrator has a primary Fresnel lens with multiple panels, each of which forms a Köhler integrator with a respective panel of a lenticular secondary lens. The resulting plurality of integrators all concentrate sunlight onto a common photovoltaic cell. Luminaires using a similar geometry are also described.
摘要:
One optical system comprises a first optical surface, a faceted second optical surface, and a faceted third optical surface. The optical system is operative to convert a first bundle of rays that is continuous in phase space outside the first optical surface into a second bundle of rays that is continuous in phase space outside the third optical surface. Between the second and third optical surfaces the rays making up the first and second bundles form discrete sub-bundles each passing from a facet of the second optical surface to a facet of the third optical surface. The sub-bundles do not form a continuous bundle in a phase space that has dimensions representing the position and angle at which rays cross a surface transverse to the bundle of rays.
摘要:
In one embodiment of a solar concentrator, a tailored aspheric lens augments the solar-concentrator performance of a concave mirror, widening its acceptance angle for easier solar tracking, making it more cost-competitive for ultra-large arrays. The molded-glass secondary lens also includes a short rod for reducing the peak concentration on a photovoltaic cell that is optically bonded to the end of the rod. The Simultaneous Multiple Surface method produces lens shapes suitable for a variety of medium and high concentrations by mirrored dishes. Besides the rotationally symmetric parabolic mirror itself, other aspheric deviations therefrom are described, including a free-form rectangular mirror that has its focal region at its edge.
摘要:
One optical system comprises a first optical surface, a faceted second optical surface, and a faceted third optical surface. The optical system is operative to convert a first bundle of rays that is continuous in phase space outside the first optical surface into a second bundle of rays that is continuous in phase space outside the third optical surface. Between the second and third optical surfaces the rays making up the first and second bundles form discrete sub-bundles each passing from a facet of the second optical surface to a facet of the third optical surface. The sub-bundles do not form a continuous bundle in a phase space that has dimensions representing the position and angle at which rays cross a surface transverse to the bundle of rays.
摘要:
One example of a solar photovoltaic concentrator has a primary mirror with multiple free-form panels, each of which forms a Köhler integrator with a respective panel of a lenticular secondary lens. The Köhler integrators are folded by a common intermediate mirror. The resulting plurality of integrators all concentrate sunlight onto a common photovoltaic cell. Luminaires using a similar geometry are also described.
摘要:
A waveguide version of a Kohler integrator is disclosed, utilizing geodesic lenses with a surface that can be mapped to a gradient-index Luneburg lens or to a nonfull-aperture Luneburg lens in such a way that the light paths in the gradient index lenses map into the geodesics of the surface, with the outer region of the gradient index lenses mapped into a flat surface. Arrays of these can be applied to lines of LEDs, as in CHMSLs, to mix light in intensity and in illumination as well as to avoid the deleterious effects of binning and burnout, or in multicolor arrays, to ensure complete chromatic mixing.
摘要:
In one embodiment of a solar concentrator, a tailored aspheric lens augments the solar-concentrator performance of a concave mirror, widening its acceptance angle for easier solar tracking, making it more cost-competitive for ultra-large arrays. The molded-glass secondary lens also includes a short rod for reducing the peak concentration on a photovoltaic cell that is optically bonded to the end of the rod. The Simultaneous Multiple Surface method produces lens shapes suitable for a variety of medium and high concentrations by mirrored dishes. Besides the rotationally symmetric parabolic mirror itself, other aspheric deviations therefrom are described, including a free-form rectangular mirror that has its focal region at its edge.
摘要:
A luminaire has a light source and a shell integrator. The shell integrator has a transparent dome over the light source, with inner and outer surfaces formed as arrays of lenslets. Each lenslet of the inner surface images the light source onto a respective lenslet of the outer surface, and each lenslet of the outer surface images the respective lenslet of the inner surface as a virtual image onto the light source. The dome may be substantially hemispherical. The light source and the integrator may be at an input of a collimator.
摘要:
The present embodiments provide methods and systems to homogenize illumination on a target. Some embodiments provide rotational symmetric dual-reflector solar concentrators that include a concave primary reflector with an aim-direction directed toward the sun to receive optical radiation in a far-field angle within an angle of acceptance and redirect radiation upward and centrally generating flux concentration, a secondary reflector positioned coaxial with said primary reflector to receive said redirected radiation and redirect radiation downward and centrally generating flux concentration solar rays, and a central target zone receiving said concentrated solar rays, where cross sections of said primary and secondary reflectors both further comprise a multiplicity of segments that establish a correspondence between pairs of segments, each of said segments of said primary reflector such as to image said angle of acceptance onto said corresponding segment of said secondary reflector to image onto said target zone.