摘要:
A wireless communication base station including a transceiver coupled to a controller configured to cause the base station to serve a plurality of user terminals in a series of downlink radio frames each having a first temporal region and a second temporal region. The controller is configured to assign the plurality of user terminals to first and second groups, wherein the user terminals in the first group are served in the first temporal region of the downlink radio frame and the user terminals in the second group are served in the second temporal region of the downlink radio frame. The controller is also configured to change a duration of either of the first and second temporal regions of at least one downlink radio frame in the series of downlink radio frames, wherein a downlink radio frame contains an indicator signaling a change of duration of either of the first or second temporal regions of at least one downlink radio frame in the series of downlink radio frames.
摘要:
Methods for performing change of primary cell during carrier aggregation operation are described. A mobile station (MS) receives a message to change a primary cell and to perform a random access communication with a new primary cell. Upon receiving a random access response message from the new primary cell, the MS starts transmitting a control channel to the new primary cell. In one embodiment, the MS releases the configuration of an uplink control channel and transmits uplink control information through an uplink shared channel. Upon completion of the primary cell change procedure, the MS starts transmission of an uplink control channel to the new primary cell.
摘要:
Methods for performing handovers and addition of carriers during carrier aggregation operation are described. A mobile station can indicate failure to perform downlink synchronization to some but not all cells of a target eNB, in response to a handover command. The mobile station can activate carriers based on various combinations of transmission of random access preambles, reception of random access response messages and transmission of handover complete messages. A base station can activate carriers based on various combinations of reception of random access preambles, transmission of random access response messages and reception of handover complete messages.
摘要:
A method in a wireless communication terminal supports aggregated carrier access. The terminal is configured to transmit a power headroom report of a first type, determine that a condition for transmission of a power headroom report of a second type is satisfied, and transmits a power headroom report of the second type. In other embodiments, essential power headroom reports are prioritized over non-essential power headroom reports.
摘要:
A mobile communication device (102) includes a wide area network (WAN) modem (122) for communicating over a wireless WAN. During a voice call, the WAN modem operates in a power save mode (206) but must occasionally scan for handover candidate base stations (208). The modem goes directly from the power save mode to a scan mode at an agreed upon time, first selected by the mobile communication device, but which may be modified by the base station.
摘要:
The various embodiments provide a mobile station having at least a first and a second radio transceivers wherein a medium access control (MAC) layer framework coordinates the transmission and reception of the at least a first and a second transceiver systems. In addition, the various embodiments employ asynchronous connectionless links (ACL) for voice traffic on a Bluetooth™ link rather than SCO links. A central scheduler (305) interfaces with a first MAC layer (311) and a second MAC layer (321). By interacting with the MAC layers of both systems, the central scheduler (305) collects traffic information from both PHY layers at the buffer (309), including transmission/reception timing, and Quality of Service (QoS) requirements for voice traffic. Based upon the collected information the central scheduler (305) will schedule transmissions by both systems in a non-time-overlapping manner so as to avoid radio frequency interference.
摘要:
A method in a wireless communication terminal supports aggregated carrier access. The terminal is configured to transmit a power headroom report of a first type, determine that a condition for transmission of a power headroom report of a second type is satisfied, and transmits a power headroom report of the second type. In other embodiments, essential power headroom reports are prioritized over non-essential power headroom reports.
摘要:
Methods for performing change of primary cell during carrier aggregation operation are described. A mobile station (MS) receives a message to change a primary cell and to perform a random access communication with a new primary cell. Upon receiving a random access response message from the new primary cell, the MS starts transmitting a control channel to the new primary cell. In one embodiment, the MS releases the configuration of an uplink control channel and transmits uplink control information through an uplink shared channel. Upon completion of the primary cell change procedure, the MS starts transmission of an uplink control channel to the new primary cell.
摘要:
Methods for performing handovers and addition of carriers during carrier aggregation operation are described. A mobile station can indicate failure to perform downlink synchronization to some but not all cells of a target eNB, in response to a handover command. The mobile station can activate carriers based on various combinations of transmission of random access preambles, reception of random access response messages and transmission of handover complete messages. A base station can activate carriers based on various combinations of reception of random access preambles, transmission of random access response messages and reception of handover complete messages.
摘要:
An Automatic Repeat-reQuest (ARQ) Reset method for an ARQ transmitter disables (120) transmission, starts (130) an ARQ transmitter window at a first unacknowledged block, and discards (140) service data units (SDUs) in the ARQ transmitter window having zero blocks in a ‘not-sent’ state. Thus, for all SDUs having no blocks in a ‘not-sent’ state, the blocks in an ‘outstanding’ or ‘waiting-for-retransmission’ state are changed to a ‘discard’ state. Next, the ARQ transmitter sets (150) the state of all blocks in partially unsent SDUs of the ARQ transmitter window to ‘not-sent.’ So, any remaining blocks in an ‘outstanding,’ ‘waiting-for-transmission’ or ‘discard’ state are changed to ‘not-sent.’ After the ARQ transmitter enables (160) transmission and ends (190) the ARQ Reset procedure, the ARQ transmitter will send blocks in the ‘not-sent’ state. This ARQ Reset method avoids retransmitting blocks that might cause duplicate packets at the ARQ receiver, which some protocols cannot handle.