Apparatus and method for predicting customer behavior
    4.
    发明授权
    Apparatus and method for predicting customer behavior 有权
    用于预测客户行为的装置和方法

    公开(公告)号:US09129290B2

    公开(公告)日:2015-09-08

    申请号:US12392058

    申请日:2009-02-24

    IPC分类号: G06Q10/00 G06Q30/02

    摘要: A predictive model generator that enhances customer experience, reduces the cost of servicing a customer, and prevents customer attrition by predicting the appropriate interaction channel through analysis of different types of data and filtering of irrelevant data. The model includes a customer interaction data engine for transforming data into a proper format for storage, data warehouse for receiving data from a variety of sources, and a predictive engine for analyzing the data and building models.

    摘要翻译: 一种预测模型生成器,可增强客户体验,降低客户服务成本,并通过分析不同类型的数据和过滤不相关数据来预测适当的交互渠道,从而防止客户流失。 该模型包括用于将数据转换为适当格式的客户交互数据引擎,用于从各种来源接收数据的数据仓库,以及用于分析数据和构建模型的预测引擎。

    APPARATUS AND METHOD FOR PREDICTING CUSTOMER BEHAVIOR
    5.
    发明申请
    APPARATUS AND METHOD FOR PREDICTING CUSTOMER BEHAVIOR 有权
    用于预测客户行为的装置和方法

    公开(公告)号:US20090222313A1

    公开(公告)日:2009-09-03

    申请号:US12392058

    申请日:2009-02-24

    摘要: A predictive model generator that enhances customer experience, reduces the cost of servicing a customer, and prevents customer attrition by predicting the appropriate interaction channel through analysis of different types of data and filtering of irrelevant data. The model includes a customer interaction data engine for transforming data into a proper format for storage, data warehouse for receiving data from a variety of sources, and a predictive engine for analyzing the data and building models.

    摘要翻译: 一种预测模型生成器,可增强客户体验,降低客户服务成本,并通过分析不同类型的数据和过滤不相关数据来预测适当的交互渠道,从而防止客户流失。 该模型包括用于将数据转换为适当格式的客户交互数据引擎,用于从各种来源接收数据的数据仓库,以及用于分析数据和构建模型的预测引擎。

    Method and apparatus for analyzing and applying data related to customer interactions with social media
    9.
    发明授权
    Method and apparatus for analyzing and applying data related to customer interactions with social media 有权
    用于分析和应用与社交媒体的客户互动相关数据的方法和装置

    公开(公告)号:US09536269B2

    公开(公告)日:2017-01-03

    申请号:US13349807

    申请日:2012-01-13

    摘要: Embodiments of the invention provide techniques that quantize community interactions with social media to understand and influence consumer experiences. Embodiments include a customer predictive experience platform. The platform can include an outcome engine configured for information mining and applying rules and analytics to the information, and an ops module configured for providing agent performance management, average handling time analytics, workflow management, and voice of the customer facilities. The platform can also include a chat module, a social media dialog engine, and a solution client configured for effecting predictive self-service, active auto sentiment management and rapid response to counteract negative sentiment, a customer experience ticker, a pre- and post-launch pulse, enhanced brand ambassadors, integration into corporate messaging and marketing, a social media dashboard, and a live portal configured for social media engagement and feedback.

    摘要翻译: 本发明的实施例提供了量化与社交媒体的社区互动以了解和影响消费者体验的技术。 实施例包括客户预测体验平台。 该平台可以包括配置用于信息挖掘和将信息应用规则和分析的结果引擎,以及配置为提供代理性能管理,平均处理时间分析,工作流管理和客户设施语音的操作模块。 该平台还可以包括聊天模块,社交媒体对话引擎和配置用于实现预测性自助服务,主动自动情绪管理和快速响应以消除负面情绪的解决方案客户端,客户体验记录器, 推出脉搏,增强品牌大使,融入企业信息和营销,社交媒体仪表板,以及配置为社交媒体参与和反馈的现场门户。

    Chat Categorization and Agent Performance Modeling
    10.
    发明申请
    Chat Categorization and Agent Performance Modeling 审中-公开
    聊天分类和代理性能建模

    公开(公告)号:US20120130771A1

    公开(公告)日:2012-05-24

    申请号:US13161291

    申请日:2011-06-15

    IPC分类号: G06Q10/00 G06F17/30

    摘要: Chat categorization uses semi-supervised clustering to provide Voice of the Customer (VOC) analytics over unstructured data via an historical understanding of topic categories discussed to derive an automated methodology of topic categorization for new data; application of semi-supervised clustering (SSC) for VOC analytics; generation of seed data for SSC; and a voting algorithm for use in the absence of domain knowledge/manual tagged data. Customer service interactions are mined and quality of these interactions is measured by “Customer's Vote” which, in turn, is determined by the customer's experience during the interaction and the quality of customer issue resolution. Key features of the interaction that drive a positive experience and resolution are automatically learned via machine learning driven algorithms based on historical data. This, in turn, is used to coach/teach the system/service representative on future interactions.

    摘要翻译: 聊天分类使用半监督聚类,通过对所讨论的主题类别的历史了解,为非结构化数据提供客户声音(VOC)分析,以获得新数据的主题分类的自动化方法; 应用半监督聚类(SSC)进行VOC分析; SSC的种子数据的生成; 以及在没有域知识/手动标记数据的情况下使用的投票算法。 客户服务互动被挖掘,这些互动的质量是通过“客户的投票”衡量的,而客户的投票又由客户在交互中的经验和客户问题解决的质量决定。 通过基于历史数据的机器学习驱动的算法,自动学习促进积极体验和分辨率的交互的主要特征。 这反过来用于教授/教授系统/服务代表对未来的交互。