Abstract:
A moving picture coding method including: determining whether or not (a) a picture including a co-located block and (b) a current picture to be coded are included in a same view, the co-located block being a block that is included in a picture different from the current picture and is at a position corresponding to a position of a current block to be coded included in the current picture; adjusting the position of the co-located block when the picture including the co-located block and the current picture are included in different views; and adding to the list an entry including a motion vector derived from the co-located block, wherein the adjusting includes: obtaining a disparity vector between the view including the picture including the co-located block and the view including the current picture; and adjusting the position of the co-located block by the obtained disparity vector.
Abstract:
An image coding method, comprising: subtracting a prediction signal from the input image signal for each coding unit, thereby generating respective prediction error signals; performing orthogonal transform and quantization on a corresponding one of the prediction error signals for each transform unit, eventually generating quantization coefficients; and coding pieces of management information indicating a structure of the transform units and the quantization coefficients into a tree structure. Each of the transform units corresponds to a corresponding one of leaf nodes in the tree structure. In the coding, for each leaf node, management information and a quantization coefficient are coded, eventually generating a coded signal in which the coded management information and the coded quantization coefficient are arranged in succession for each leaf node.
Abstract:
An image coding method, comprising: subtracting a prediction signal from the input image signal for each coding unit, thereby generating respective prediction error signals; performing orthogonal transform and quantization on a corresponding one of the prediction error signals for each transform unit, eventually generating quantization coefficients; and coding pieces of management information indicating a structure of the transform units and the quantization coefficients into a tree structure. Each of the transform units corresponds to a corresponding one of leaf nodes in the tree structure. In the coding, for each leaf node, management information and a quantization coefficient are coded, eventually generating a coded signal in which the coded management information and the coded quantization coefficient are arranged in succession for each leaf node.
Abstract:
An image coding method includes: deriving a candidate for a motion vector of a current block from a co-located motion vector; adding the candidate to a list; selecting the motion vector of the current block from the list; and coding the current block, wherein the deriving includes: deriving the candidate by a first derivation scheme in the case of determining that each of a current reference picture and a co-located reference picture is a long-term reference picture; and deriving the candidate by a second derivation scheme in the case of determining that each of the current reference picture and the co-located reference picture is a short-term reference picture.
Abstract:
An image decoding apparatus includes a request unit that requests an image transmission apparatus to transmit an image, a transmission unit that transmits range information indicating a range which is a partial range of the image and which is selected in accordance with a user operation to the image transmission apparatus, a receiving unit that, while the partial range of the image is selected, receives, from the image transmission apparatus, the entirety of the image when the image belongs to a first type and a portion of the image when the image belongs to a second type, by receiving one or more tiles, which corresponds to the partial range of the image and outside which a reference to is prohibited in inter-picture prediction, among a plurality of tiles included in the image, and a decoding unit that decodes the received entirety or portion of the image.
Abstract:
A moving picture coding includes: coding a first flag indicating whether or not temporal motion vector prediction is used; when the first flag indicates that the temporal motion vector prediction is used: coding a first parameter for calculating the temporal predictive motion vector; wherein when the first flag indicates that the temporal motion vector prediction is not used, the first parameter is not coded.
Abstract:
A decoding method decodes last position information indicating horizontal and vertical positions of a last non-zero coefficient in a predetermined order within a current block to be decoded, the current block including plural coefficients. The decoding includes obtaining a bitstream including first, second, third and fourth partial signals, in this order, performing first arithmetic decoding on the first and the third partial signals respectively to obtain decoded first and decoded third partial signals, performing second arithmetic decoding on the second and the fourth partial signals respectively to obtain decoded second and decoded fourth partial signals, the second arithmetic decoding being different from the first arithmetic decoding, deriving a horizontal component of the last position information from the decoded first and decoded third partial signals, and deriving a vertical component of the last position information from the decoded second and decoded fourth partial signals.
Abstract:
An image coding method including: binarizing a first component and a second component which are included in last position information, to generate a first binary signal and a second binary signal, respectively; coding, by first arithmetic coding, a first partial signal which is a part of the first binary signal and a second partial signal which a part of the second binary signal, and coding, by second arithmetic coding, a third partial signal which is another part of the first binary signal and a fourth partial signal which is another part of the second binary signal; and placing the coded first through fourth partial signals in a bit stream, wherein in the placing, (i) the coded second partial signal is placed next to the coded first partial signal, or (ii) the coded fourth partial signal is placed next to the coded third partial signal.
Abstract:
An image coding method includes: obtaining a pixel signal of a current region to be processed; calculating offset information including at least one of a location from which the offset information for the current region is obtained, a total number of blocks which share the offset information, a pattern of partitioning the current region, a pixel classification method for classifying pixels into categories, a category index number of band offset, or an offset value; applying offset to the current region using the offset information, the offset being applied with adjustment to the offset value when a predetermined condition is satisfied; coding the offset information; outputting an offset-applied signal generated by the applying of offset; and controlling the applying of offset.
Abstract:
An image decoding method of decoding encoded data per unit included in units that are included in a picture is provided. The image decoding method obtains, from an encoded bitstream including the encoded data, a first flag indicating whether or not a removal time of the encoded data from a buffer for storing the encoded data is set per unit. The image decoding method further obtains, from the encoded bitstream, a second flag indicating whether an interval between removal times of the units is constant or arbitrary when the removal times are set per unit. The image decoding method removes the encoded data from the buffer per unit and at a constant or arbitrary interval according to the second flag, and decodes the removed encoded data.