Abstract:
A millimeter-wave controller receives, from a microwave-communication control apparatus belonging to a microwave network, a first signal including location information of a first terminal belonging thereto and a use request for the first terminal to use the millimeter-wave network. A beam range for the first terminal and a first wireless resource that is included in one or more wireless resources of one or more millimeter-wave access points and that is to be allocated to the first terminal are set based on the location information. A use permission for the millimeter-wave network and first connection information for connection to a first millimeter-wave access point corresponding to the first wireless resource are transmitted to the microwave-communication control apparatus. The first connection information differs from second connection information for a second terminal belonging to the millimeter-wave network, the second terminal connects to the first millimeter-wave access point by using the second connection information.
Abstract:
A wireless communication method includes: storing antenna-pair set information and a first measurement result in association with each other for every positional-arrangement, the antenna-pair set information being information on a set of pairs of transmission antennas and reception antennas that achieves a best throughput for the positional-arrangement, the first measurement result being a measurement result of reception characteristics of a training signal transmitted from at least one of the plurality of transmission antennas; selecting current antenna-pair set information corresponding to a current positional-arrangement by comparing a second measurement result with the first measurement result stored, the second measurement result being a measurement result of reception characteristics of the training signal measured at the plurality of reception antennas in the current positional-arrangement; and establishing links between the plurality of transmission antennas and the respective plurality of reception antennas based on the current antenna-pair set information corresponding to the current positional-arrangement.
Abstract:
A distortion-compensating power amplifier compensates for nonlinear distortion in a power amplifier. The distortion-compensating power amplifier includes: a predistorter that performs pre-distortion processing, the pre-distortion processing applying an inverse characteristic of a distortion characteristic that is generated in the power amplifier to an input signal; a filter that performs band limitation on the pre-distorted input signal by using a frequency characteristic that is asymmetric with respect to a center frequency of the input signal, the filter having a filter coefficient that is a complex number; a down-sampler that down-samples the band-limited input signal; and a digital-to-analog converter that converts the down-sampled input signal from a digital signal to an analog signal.
Abstract:
A signal-generating circuit includes a voltage-controlled oscillator that generates an oscillated signal; a first frequency divider that generates a first divided signal by dividing the oscillated signal; a second frequency divider that generates a second divided signal by dividing the divided signal; a phase comparator that receives as input the second divided signal and a reference signal and outputs two signals corresponding to a phase difference therebetween; a loop filter that extracts a low frequency signal between the two signals to be output to the voltage-controlled oscillator; a third frequency divider that generates a third divided signal by dividing the first divided signal; a first frequency converter that generates a first frequency converted signal by multiplying the oscillated signal by the third divided signal; and a first multiplier that generates a multiplied signal by multiplying the first frequency converted signal by a first multiplication number.