Abstract:
A nitride semiconductor device includes: a substrate; a first nitride semiconductor layer disposed above the substrate; a second nitride semiconductor layer disposed above the first nitride semiconductor layer and having a band gap larger than a band gap of the first nitride semiconductor layer; a third nitride semiconductor layer selectively disposed above the second nitride semiconductor layer and containing a p-type first impurity element; a high resistance region disposed in the third nitride semiconductor layer, the high resistance region containing a second impurity element and having a specific resistance higher than a specific resistance of the third nitride semiconductor layer; and a gate electrode disposed above the high resistance region, wherein an end of the high resistance region is inside a surface end of the third nitride semiconductor layer.
Abstract:
A semiconductor device includes a substrate; a first nitride semiconductor layer above the substrate; a second nitride semiconductor layer on the first nitride semiconductor layer; an ohmic electrode above the substrate; and a contact layer in contact with at least a part of the ohmic electrode, the contact layer containing silicon and chlorine. The second nitride semiconductor layer has a wider band gap than the first nitride semiconductor layer. A two-dimensional electron gas channel is formed in the first nitride semiconductor layer at a heterointerface between the first nitride semiconductor layer and the second nitride semiconductor layer. A silicon concentration has a higher peak value than a chlorine concentration in the contact layer.
Abstract:
A semiconductor device includes a substrate, a semiconductor layer stacked body, and a source electrode and a drain electrode formed on the semiconductor layer stacked body. The semiconductor layer stacked body includes a first nitride semiconductor layer formed on the substrate, and a second nitride semiconductor layer formed on the first nitride semiconductor layer. The semiconductor device further includes a third nitride semiconductor layer formed on the second nitride semiconductor layer and disposed between the source electrode and the drain electrode, and a gate electrode formed on the third nitride semiconductor layer. The semiconductor device includes a first magnesium-containing region having a magnesium concentration of 1×1018 cm−3 or more that is provided right under the third nitride semiconductor layer, from an upper surface of the second nitride semiconductor layer to a position lower than an interface between the first nitride semiconductor layer and the second nitride semiconductor layer.
Abstract translation:半导体器件包括衬底,半导体层堆叠体以及形成在半导体层堆叠体上的源电极和漏电极。 半导体层堆叠体包括形成在基板上的第一氮化物半导体层和形成在第一氮化物半导体层上的第二氮化物半导体层。 半导体器件还包括形成在第二氮化物半导体层上并且设置在源电极和漏电极之间的第三氮化物半导体层,以及形成在第三氮化物半导体层上的栅电极。 半导体器件包括第一含镁区域,其具有设置在第三氮化物半导体层正下方的1×10 18 cm -3以上的镁浓度,从第二氮化物半导体层的上表面到低于 第一氮化物半导体层和第二氮化物半导体层之间的界面。
Abstract:
A nitride semiconductor device includes: a substrate; a first nitride semiconductor layer; a second nitride semiconductor layer having a greater band gap than the first nitride semiconductor layer; a source electrode and a drain electrode on the second nitride semiconductor layer apart from each other; a third nitride semiconductor layer, between the source electrode and the drain electrode, containing a p-type first impurity and serving as a gate; and a fourth nitride semiconductor layer, between the third nitride semiconductor layer and the drain electrode, containing a p-type second impurity, wherein the average carrier concentration of the fourth nitride semiconductor layer is lower than the average carrier concentration of the third nitride semiconductor layer.
Abstract:
A semiconductor device includes: a substrate; a channel layer constituted of a single nitride semiconductor on the substrate; a first barrier layer which is a nitride semiconductor on a part of an upper surface of the channel layer and having a band gap larger than that of the channel layer; a gate layer which is a nitride semiconductor on and in contact with the first barrier layer; a second barrier layer which is a nitride semiconductor in contact with the first barrier layer in an area where the gate layer is not disposed above the channel layer, and having a band gap larger than that of the channel layer and having a thickness or a band gap independent from the first barrier layer; a gate electrode on the gate layer; and a source electrode and a drain electrode spaced apart from the gate layer and on the second barrier layer.
Abstract:
A semiconductor device includes a substrate, a first nitride semiconductor layer formed on the substrate, a p-type nitride semiconductor layer formed on the first nitride semiconductor layer, a recess having a bottom portion which reaches the first nitride semiconductor layer through a part of the p-type nitride semiconductor layer, a third nitride semiconductor layer formed to cover the bottom portion of the recess, a side portion of the recess, and a part of an upper surface of the p-type nitride semiconductor layer. The semiconductor device further includes a fourth nitride semiconductor layer formed on the third nitride semiconductor layer, a first electrode formed on another side of the substrate, a gate electrode formed on the upper surface of the p-type nitride semiconductor layer, and a second electrode that is in contact with the third nitride semiconductor layer or the fourth nitride semiconductor layer. The third nitride semiconductor layer has a bandgap different from a bandgap of the fourth nitride semiconductor layer.
Abstract:
A nitride semiconductor device including a substrate, a channel layer, a carbon-poor barrier layer having a recess, a carbon-rich barrier layer disposed over the recess and the carbon-poor barrier layer, and a gate electrode above the recess, wherein the carbon-poor and carbon-rich barrier layers have bandgaps larger than that of the channel layer, the upper surface of the carbon-rich barrier layer includes a first main surface including a source electrode and a drain electrode, and a bottom surface of a depression disposed along the recess, and side surfaces of the depression connecting the first main surface to the bottom surface of the depression, and among edges of the depression of the carbon-rich barrier layer which are boundaries between the first main surface and the side surfaces of the depression, the edge of the depression of the carbon-rich barrier layer closest to the drain electrode is covered with the gate electrode.