Abstract:
The problem to be overcome by the present disclosure is to reduce harmonic components included in output signals. A magnetic sensor includes a detecting magnetoresistance element and a canceling magnetoresistance element. A tilt angle formed by a magnetic sensing direction of the canceling magnetoresistance element with respect to a magnetic sensing direction of the detecting magnetoresistance element falls within a predetermined range. The predetermined range is defined by reference to either n×α/3 or n×α/3+α/2, where α is an angle of rotation of a rotator corresponding to one cycle of a fundamental harmonic included in output signals of the detecting magnetoresistance element and n is a natural number equal to or greater than 1.
Abstract:
A switch is inserted and connected between a first portion and a second portion of an HPD line. The switch connects the first portion to the second portion when an HPD signal is outputted to the second portion. The switch cuts off the connection between the first portion and the second portion when the HPD signal is not outputted to the second portion. An AND gate generates a connection state detection signal that represents the connection state of an HDMI optical active cable, and outputs the connection state detection signal to a switch.
Abstract:
A signal processing method according to the present disclosure is for use in a signal processing system including a first magnetic detection unit, a second magnetic detection unit, and a processing unit. The signal processing method includes an angle calculating step and a failure diagnosis step. The angle calculating step includes transforming, by using an inverse trigonometric function, a sine signal, a cosine signal, and a tangent signal into a first angle signal, a second angle signal, and a third angle signal, respectively. The failure diagnosis step includes making a failure diagnosis of the first magnetic detection unit and the second magnetic detection unit by comparing with each other two or more pieces of angle information selected from first angle information, second angle information, and third angle information.
Abstract:
A radar system includes: control circuitry that generates a beam control signal; a first radar device including a first transmission antenna and first beam formation circuitry that causes the first transmission antenna to perform a first scan including a second scan from left to right by changing an emission angle and a third scan from right to left by changing an emission angle in such a manner that a part of the second scan and a part of the third scan are performed alternately one after another; and a second radar device including a second transmission antenna and second beam formation circuitry that cause the second transmission antenna to perform a fourth scan in such a manner that a phase of the fourth scan is opposite to a phase of the first scan.