Abstract:
A light apparatus mounted on a vehicle includes a lamp unit having: a first cover, and a light source that emits light through a first cover into a predetermined area including a first direction. The light apparatus also includes: a radar unit provided on a lower side or an upper side of the lamp unit, and a separator provided between the lamp unit and the radar unit. The radar unit includes: a circuit board having a board surface arranged in a substantially horizontal state, and an antenna unit that transmits an electromagnetic wave in a range including a second direction different from the first direction and that receives a reflected wave from an object existing outside the vehicle. The antenna unit is arranged in the board surface.
Abstract:
A semiconductor device includes a metal plate capacitor that includes a heat-resistant metal plate and a capacitor unit including a sintered dielectric formed on at least one surface of the heat-resistant metal plate, a semiconductor chip disposed on the metal plate capacitor, a connector configured to electrically connect the semiconductor chip and the metal plate capacitor, and a protector configured to protect the semiconductor chip, the metal plate capacitor, and the connector.
Abstract:
A radar system includes: control circuitry that generates a beam control signal; a first radar device including a first transmission antenna and first beam formation circuitry that causes the first transmission antenna to perform a first scan including a second scan from left to right by changing an emission angle and a third scan from right to left by changing an emission angle in such a manner that a part of the second scan and a part of the third scan are performed alternately one after another; and a second radar device including a second transmission antenna and second beam formation circuitry that cause the second transmission antenna to perform a fourth scan in such a manner that a phase of the fourth scan is opposite to a phase of the first scan.
Abstract:
A multilevel signal transmitting apparatus transmits a multilevel data signal with M voltage levels, and a multilevel clock signal with (M−2) voltage levels, to a multilevel signal receiving apparatus, where M is an even number equal to or more than four. The voltage levels of the multilevel data signal include M/2 first voltage levels larger than a reference voltage level, and M/2 second voltage levels smaller than the reference voltage level. Between each pair of adjacent voltage levels among the first voltage levels, one voltage level of the multilevel clock signal is set. Between each pair of adjacent voltage levels among the second voltage levels, one voltage level of the multilevel clock signal is set. An average of the voltage levels of the multilevel clock signal has a value between a minimum of the first voltage levels, and a maximum of the second voltage levels.
Abstract:
An imaging device having an imager that includes first pixels having sensitivity to a first light and second pixels having sensitivity to a second light, a wavelength of the first light being different from a wavelength of the second light. The imager being configured to acquire first image data from the first pixels and being configured to acquire second image data from the second pixels. Each of the first image data and the second image data including an image of a code, the code being configured to output the second light. The imaging device further including an image processor configured to extract an image of the code based on the first image data and the second image data.
Abstract:
An imaging device includes a pixel. The pixel includes: a first electrode; a second electrode facing the first electrode; a photoelectric conversion layer between the first electrode and the second electrode, the photoelectric conversion layer converting light into signal charge; and a charge accumulation region coupled to the second electrode, the charge accumulation region accumulating the signal charge. The pixel captures first data in a first exposure period and captures second data in a second exposure period different from the first exposure period, the first exposure period and the second exposure period being included in a frame period. A length of the first exposure period is different from a length of the second exposure period. The imaging device generates multiple-exposure image data including at least the first data and the second data.
Abstract:
An image generation device includes a first reception unit and a control unit. The first reception unit receives travel information about the travel state of a moving body. The control unit sets, based on the travel information, a multiple-exposure region in an imaging region of an image sensor used on the moving body, and generates image data in which the multiple-exposure region in the imaging region is formed through a multiple exposure and a region other than the multiple-exposure region is not formed through the multiple exposure.
Abstract:
An image generation device includes a receiver and a controller. The receiver receives travel information about the travel state of a movable-body apparatus. The controller selects, based on the travel information, a first partial region from an entirety of a plurality of pixels of an image sensor or an entirety of image data captured by the image sensor, and generates image data in which a region other than the first partial region has a resolution lower than the resolution of the first partial region. The image sensor is to be mounted to the movable-body apparatus and is configured to capture an area in a traveling direction of the movable-body apparatus.
Abstract:
A driving control system includes: an imaging device that is installed on a moving body and that images a target object in a first frame period a plurality of times to generate a multiple-exposure image data including a first image data and a second image data; and a processor that detects a relative motion state of the moving body with respect to the target object, based on the first image data and the second image data. The imaging device images the target object with a first sensitivity in a first exposure period in the first frame period to generate the first image data and images the target object with a second sensitivity in a second exposure period in the first frame period to generate the second image data, the second exposure period being different from the first exposure period, the second sensitivity being different from the first sensitivity.
Abstract:
A video data transmitter apparatus generates and transmits a multi-value amplitude modulation signal by performing a multi-value amplitude modulation of a plurality of N bits per one symbol according to video data of a video signal or a color signal constituting the video signal, or a brightness signal and a color-difference signal. A data separator portion separates the video data into first to N-th pixel data, a difference calculator portion calculates (N−1) pieces of predetermined difference information based on the separated first to N-th pixel data, and a multi-value amplitude modulator portion performs a multi-value modulation so that predetermined N-bit data corresponds to a multi-value signal level closest to an intermediate level having an intermediate value between a maximum level and a minimum level of the multi-value signal level of the multi-value amplitude modulation signal.