摘要:
A housing (410, 510, 610, 700, 800, 900) for a turbocharger (400, 500, 600) is provided. The housing (410, 510, 610, 700, 800, 900) has an impeller chamber (403, 503, 603), diffuser (450, 550, 650, 750, 850, 950) and scroll (420, 520, 620, 720, 820, 920) in fluid communication with each other. The diffuser (450, 550, 650, 750, 850, 950) can have a curved shape and/or a bend (455) in proximity to a tip (408, 508, 608, 609) of the impeller (405, 505, 605). The curved shape can be defined by one or more radii of curvature (RC, RC1, RC2). The diffuser (450, 550, 650, 750, 850, 950) can extend in a radial direction that is non-orthogonal to the center line of the turbocharger (400, 500, 600). The housing (410, 510, 610, 700, 800, 900) can be for a compressor section of the turbocharger (400, 500, 600).
摘要:
A housing (410, 510, 610, 700, 800, 900) for a turbocharger (400, 500, 600) is provided. The housing (410, 510, 610, 700, 800, 900) has an impeller chamber (403, 503, 603), diffuser (450, 550, 650, 750, 850, 950) and scroll (420, 520, 620, 720, 820, 920) in fluid communication with each other. The diffuser (450, 550, 650, 750, 850, 950) can have a curved shape and/or a bend (455) in proximity to a tip (408, 508, 608, 609) of the impeller (405, 505, 605). The curved shape can be defined by one or more radii of curvature (RC, RC1, RC2). The diffuser (450, 550, 650, 750, 850, 950) can extend in a radial direction that is non-orthogonal to the center line of the turbocharger (400, 500, 600). The housing (410, 510, 610, 700, 800, 900) can be for a compressor section of the turbocharger (400, 500, 600).
摘要:
Multi-stage turbocharging, and more particularly, an advanced multi-stage turbocharging system using the variable turbine power of one or more variable turbine geometry (VTG) turbochargers to adjust compressor boost and exhaust back pressure to engine operating demands. The invention further relates to a turbocharged internal combustion engine, in particular a turbocharged internal combustion engine with at least one high-pressure turbine stage and one downstream low-pressure turbine stage, wherein the high-pressure turbine may be a single-flow or double-flow type, wherein the high pressure or low pressure compressor may be variable geometry, wherein the high pressure or low pressure compressor may be variably bypassed, and wherein the high pressure or low pressure turbine may be provided with an active control variable bypass or wastegate.
摘要:
Multi-stage turbocharging, and more particularly, an advanced multi-stage turbocharging system using the variable turbine power of one or more variable turbine geometry (VTG) turbochargers to adjust compressor boost and exhaust back pressure to engine operating demands. The invention further relates to a turbocharged internal combustion engine, in particular a turbocharged internal combustion engine with at least one high-pressure turbine stage and one downstream low-pressure turbine stage, wherein the high-pressure turbine may be a single-flow or double-flow type, wherein the high pressure or low pressure compressor may be variable geometry, wherein the high pressure or low pressure compressor may be variably bypassed, and wherein the high pressure or low pressure turbine may be provided with an active control variable bypass or wastegate.
摘要:
A turbocharger (1) is provided with one or more movement control members (300) that are connected to the housing (2, 3, 3a) and limit axial movement of the adjustment ring (5). The members (300) can be inserted into one or more holes (400) formed in the housing (2, 3, 3a) and can extend from the holes (400) in a direction towards the adjustment ring (5). The holes (400) can be through-holes, blind-holes or combinations thereof. Various connection structures and methods can be used to affix the members (300) to the housing (2, 3, 3a) including self-locking members, casting, heat welding, friction welding, vibration hammering and staking.
摘要:
A turbocharger (1) is provided with one or more movement control members (300) that are connected to the housing (2, 3, 3a) and limit axial movement of the adjustment ring (5). The members (300) can be inserted into one or more holes (400) formed in the housing (2, 3, 3a) and can extend from the holes (400) in a direction towards the adjustment ring (5). The holes (400) can be through-holes, blind-holes or combinations thereof. Various connection structures and methods can be used to affix the members (300) to the housing (2, 3, 3a) including self-locking members, casting, heat welding, friction welding, vibration hammering and staking.
摘要:
A rotor shaft assembly (101) of a type used in a turbocharger, manufactured by mounting a powder compact of a titanium aluminide rotor (203) to a powder compact of a steel shaft (207), with a metal powder admixed with a binder (211) interposed between the rotor and shaft, and debinding and sintering the mounted compact combination. Sintering produces a strong metallurgical bond between the shaft and rotor, providing a near-net rotor shaft assembly (101) and also an inexpensive and efficient method for the manufacture of an assembly capable of withstanding the high forces and temperatures within a turbocharger.
摘要:
Multi-stage turbocharging, and more particularly, an advanced multi-stage turbocharging system using the variable turbine power of one or more variable turbine geometry (VTG) turbochargers to adjust compressor boost and exhaust back pressure to engine operating demands. The invention further relates to a turbocharged internal combustion engine, in particular a turbocharged internal combustion engine with at least one high-pressure turbine stage and one downstream low-pressure turbine stage, wherein the high-pressure turbine may be a single-flow or double-flow type, wherein the high pressure or low pressure compressor may be variable geometry, wherein the high pressure or low pressure compressor may be variably bypassed, and wherein the high pressure or low pressure turbine may be provided with an active control variable bypass or wastegate.
摘要:
A rotor shaft assembly (101) of a type used in a turbocharger, manufactured by mounting a powder compact of a titanium aluminide rotor (203) to a powder compact of a steel shaft (207), with a metal powder admixed with a binder (211) interposed between the rotor and shaft, and debinding and sintering the mounted compact combination. Sintering produces a strong metallurgical bond between the shaft and rotor, providing a near-net rotor shaft assembly (101) and also an inexpensive and efficient method for the manufacture of an assembly capable of withstanding the high forces and temperatures within a turbocharger.