摘要:
Methods and apparatus provide for birefringent waveguides suitable for optical systems exhibiting polarization dependence such as interferometer sensors including Sagnac interferometric fiber optic gyroscopes (IFOG). The waveguides, for some embodiments, may offer single polarization performance over lengths of about a kilometer or more due to polarization dependent attenuation. According to some embodiments, the waveguides incorporate a pure silica core for resistance to radiation-induced attenuation (RIA).
摘要:
Methods and apparatus provide for birefringent waveguides suitable for optical systems exhibiting polarization dependence such as interferometer sensors including Sagnac interferometric fiber optic gyroscopes (IFOG). The waveguides, for some embodiments, may offer single polarization performance over lengths of about a kilometer or more due to polarization dependent attenuation. According to some embodiments, the waveguides incorporate a pure silica core for resistance to radiation-induced attenuation (RIA).
摘要:
Methods and apparatus provide for birefringent waveguides suitable for optical systems exhibiting polarization dependence such as interferometer sensors including Sagnac interferometric fiber optic gyroscopes (IFOG). The waveguides, for some embodiments, may offer single polarization performance over lengths of about a kilometer or more due to polarization dependent attenuation. According to some embodiments, the waveguides incorporate a pure silica core for resistance to radiation-induced attenuation (RIA).
摘要:
Methods and apparatus provide for birefringent waveguides suitable for optical systems exhibiting polarization dependence such as interferometer sensors including Sagnac interferometric fiber optic gyroscopes (IFOG). The waveguides, for some embodiments, may offer single polarization performance over lengths of about a kilometer or more due to polarization dependent attenuation. According to some embodiments, the waveguides incorporate a pure silica core for resistance to radiation-induced attenuation (RIA).
摘要:
The present invention provides a method for making a multicore large diameter optical waveguide having a cross-section of at least about 0.3 millimeters, two or more inner cores, a cladding surrounding the two or more inner cores, and one or more side holes for reducing the bulk modulus of compressibility and maintaining the anti-buckling strength of the large diameter optical waveguide. The method features the steps of: assembling a preform for drawing a multicore large diameter optical waveguide having a cross-section of at least about 0.3 millimeters, by providing an outer tube having a cross-section of at least about 0.3 millimeters and arranging two or more preform elements in relation to the outer tube; heating the preform; and drawing the large diameter optical waveguide from the heated preform. In one embodiment, the method also includes the step of arranging at least one inner tube inside the outer tube.
摘要:
The present invention provides a method for making a multicore large diameter optical waveguide having a cross-section of at least about 0.3 millimeters, two or more inner cores, a cladding surrounding the two or more inner cores, and one or more side holes for reducing the bulk modulus of compressibility and maintaining the anti-buckling strength of the large diameter optical waveguide. The method features the steps of: assembling a preform for drawing a multicore large diameter optical waveguide having a cross-section of at least about 0.3 millimeters, by providing an outer tube having a cross-section of at least about 0.3 millimeters and arranging two or more preform elements in relation to the outer tube; heating the preform; and drawing the large diameter optical waveguide from the heated preform. In one embodiment, the method also includes the step of arranging at least one inner tube inside the outer tube.
摘要:
Methods and apparatus relate to optical fibers suitable for use in sensing applications exposed to radiation environments. The fibers include a core of pure silica or chlorine doped silica surrounded by a fluorinated silica cladding. These glasses for the core and cladding utilize dopants that resist radiation-induced attenuation. A two step process for forming the cladding can achieve necessary concentrations of the fluorine by performing a soot deposition process in a different environment from a consolidation process where the soot is sintered into a glass. Concentration of fluorine doped into the cladding layer enables obtaining a numerical aperture that confines a mono-mode of the fiber to resist bend-induced attenuation. Dimensions of the fiber further facilitate bending ability of the fiber.
摘要:
Methods and apparatus relate to optical fibers suitable for use in sensing applications exposed to radiation environments. The fibers include a core of pure silica or chlorine doped silica surrounded by a fluorinated silica cladding. These glasses for the core and cladding utilize dopants that resist radiation-induced attenuation. A two step process for forming the cladding can achieve necessary concentrations of the fluorine by performing a soot deposition process in a different environment from a consolidation process where the soot is sintered into a glass. Concentration of fluorine doped into the cladding layer enables obtaining a numerical aperture that confines a mono-mode of the fiber to resist bend-induced attenuation. Dimensions of the fiber further facilitate bending ability of the fiber.
摘要:
Methods and apparatus relate to optical fibers suitable for use in sensing applications exposed to radiation environments. The fibers include a core of pure silica or chlorine doped silica surrounded by a fluorinated silica cladding. These glasses for the core and cladding utilize dopants that resist radiation-induced attenuation. A two step process for forming the cladding can achieve necessary concentrations of the fluorine by performing a soot deposition process in a different environment from a consolidation process where the soot is sintered into a glass. Concentration of fluorine doped into the cladding layer enables obtaining a numerical aperture that confines a mono-mode of the fiber to resist bend-induced attenuation. Dimensions of the fiber further facilitate bending ability of the fiber.
摘要:
Methods and apparatus for performing Distributed Acoustic Sensing (DAS) using fiber optics with increased acoustic sensitivity are provided. Acoustic sensing of a wellbore, pipeline, or other conduit/tube based on DAS may have increased acoustic sensitivity through fiber optic cable design and/or increasing the Rayleigh backscatter property of a fiber's optical core. Some embodiments may utilize a resonant sensor mechanism with a high Q coupled to the DAS device for increased acoustic sensitivity.