摘要:
In a hydrocarbon release rate controlling method, a first chamber is provided capable of receiving successive batches of feed materials for thermal processing having widely varying energy content, heating is produced in the first chamber to cause pyrolyzing of the feed materials into fluid materials, a second chamber is provided communicating with the first chamber and capable of receiving the fluid materials from the first chamber and communicating the fluid materials to a discharge location, heating is produced in the second chamber to cause oxidizing of the fluid materials into discharge gases reaching the discharge location, a jacketed vessel is provided defining a channel surrounding the first and second chambers containing a flow of coolant fluid through the channel, separate variable flows of primary and secondary air are respectively produced into and through the first and second chambers, the temperatures in the first and second chambers are sensed, the temperature of the coolant in the channel of the jacketed vessel is sensed, the concentration of a preselected gas in the discharge gases is sensed, and, in response to the temperatures sensed in the first and second chambers and jacketed vessel channel coolant and in response to the concentration of the preselected gas sensed in the discharge gases, the primary and secondary flows of air into the first and second chambers are controlled so as to proportion and vary the respective amounts thereof and thereby maintain the concentration of the preselected gas in the discharge gases at a preset target level corresponding with the generation of harmless discharge gases and production of carbon-free residue ash.
摘要:
A material processing apparatus includes a casing having a top and bottom and a plurality of sides defining a pyrolysis chamber for receiving and pyrolyzing feed materials therein into fluid materials and a mass of refractory material disposed upon the bottom of the casing and spaced below the top thereof and extending between its sides. The refractory mass includes an upper surface defining a bottom of the pyrolysis chamber and having an end spaced from a first one of the casing sides to define an ash residue collection cavity therebetween. The apparatus also includes a system of tunnels defined within the refractory mass being spaced below the upper surface thereof. The system of tunnels includes an inlet defined in the refractory mass at the end thereof and below the upper surface thereof and in communication with the cavity for receiving a flow of materials from the pyrolysis chamber into the system of tunnels and an outlet defined in a second one of the sides of the casing for discharging the flow of materials from the system of tunnels. The apparatus also includes elongated heater units mounted to sides of the casing and extending into and axially along selected ones of the tunnels in the system thereof.
摘要:
A material processing apparatus includes a casing having a top and bottom and a plurality of sides defining a pyrolysis chamber for receiving and pyrolyzing feed materials therein into fluid materials and a mass of refractory material disposed upon the bottom of the casing and spaced below the top thereof and extending between its sides. The refractory mass includes an upper surface defining a bottom of the pyrolysis chamber and having an end spaced from a first one of the casing sides to define an ash residue collection cavity therebetween. The apparatus also includes a system of tunnels defined within the refractory mass being spaced below the upper surface thereof. The system of tunnels includes an inlet defined in the refractory mass at the end thereof and below the upper surface thereof and in communication with the cavity for receiving a flow of materials from the pyrolysis chamber into the system of tunnels and an outlet defined in a second one of the sides of the casing for discharging the flow of materials from the system of tunnels. The apparatus also includes elongated heater units mounted to sides of the casing and extending into and axially along selected ones of the tunnels in the system thereof.
摘要:
A method is provided for controlling the hydrocarbon release rate during thermal processing of materials having a variable caloric content. The method includes the steps of (a) providing a first chamber for receiving successive batches of feed materials for thermal processing; (b) producing heat in the first chamber to pyrolyze the feed materials into fluid materials; (c) providing a second chamber, communicating with the first chamber, for receiving the fluid materials from the first chamber and for communicating the fluid materials to a discharge location; (d) producing heat in the second chamber to oxidize the fluid materials into discharge gases reaching the discharge location; (e) providing a jacketed vessel defining a coolant-fluid-containing channel surrounding the first and second chambers; (f) producing separate variable flows of primary and secondary air respectively into and through the first and second chambers; (g) sensing the temperatures in the first and second chambers; (h) sensing the temperature of the coolant in the jacketed vessel; (i) sensing the concentration of a preselected gas in the discharge gases. In response to the foregoing sensed parameters, controlling the primary and secondary flows of air into the first and second chambers so as to maintain the concentration of the preselected gas in the discharge gases at a preset target level, thereby generating substantially harmless discharge gases and producing substantially carbon-free residue ash. Also, in response to the sensed temperatures sensed and to the sensed concentration of the preselected gas, selectively stirring ash residue collected within the first chamber according to a predetermined pattern so as to maintain the concentration of the preselected gas in the discharge gases at a preset target level corresponding with the generation of substantially harmless discharge gases and production of substantially carbon-free residue ash.
摘要:
An apparatus for controlled processing of materials includes a coolant jacketed vessel defining a first pyrolysis chamber and a second oxidation chamber, first heating elements mounted in the vessel to pyrolyze materials in the first chamber, second heating elements mounted in the vessel to oxidize materials in the second chamber, an induction fan, airflow inlet valves and an air intake proportioning valve connected to the vessel for producing separate variable flows of primary and secondary air into and through the first and second chambers, first sensors mounted on the vessel for sensing the temperatures in the first and second chambers and in the coolant, a second sensor mounted on the vessel for sensing the proportion of a predetermined gas in the discharge gases, and a control system responsive to the temperatures sensed in the first and second chambers and the coolant and to the proportion of the predetermined gas sensed in the discharge gases for controlling the induction fan and air intake proportioning valve so as to proportion the respective amounts of primary and secondary air flows through the first and second chambers in order to achieve effective pyrolyzing and oxidizing of the materials therein.