摘要:
In the manufacture of integrated labels it is desirable to apply pressure sensitive adhesive in a continuous manner, yet it is undesirable for active adhesive to be on one or more edges of the form since active adhesive can interfere with nip rollers upon entering a laser or other non-impact printer, or can otherwise interfere with proper operation of the printer. By using an adhesive--that is de-tackified by direct exposure to a sufficient type and dosage of electromagnetic radiation (such as a hot melt adhesive de-tackified by applying about 3000 mJ/cm.sup.2 total dosage of ultraviolet radiation)--that problem may be avoided. Apparatus for producing integrated labels with the adhesive at one or more edges being de-tackified may include a first conveyor for conveying sheets (either in stacked or single sheet form) in a first direction, and at least one ultraviolet radiation source mounted adjacent a side of the conveyor parallel to the first direction. A stacker, packaging device (such as a shrink wrap machine), 90.degree. conveyor, and/or turn table may also be utilized.
摘要:
In the manufacture of integrated labels it is desirable to apply pressure sensitive adhesive in a continuous manner, yet it is undesirable for active adhesive to be on one or more edges of the form since active adhesive can interfere with nip rollers upon entering a laser or other non-impact printer, or can otherwise interfere with proper operation of the printer. By using an adhesive--that is de-tackified by direct exposure to a sufficient type and dosage of electromagnetic radiation (such as a hot melt adhesive de-tackified by applying about 3000 mJ/cm.sup.2 total dosage of ultraviolet radiation)--that problem may be avoided. Apparatus for producing integrated labels with the adhesive at one or more edges being de-tackified may include a first conveyor for conveying sheets (either in stacked or single sheet form) in a first direction, and at least one ultraviolet radiation source mounted adjacent a side of the conveyor parallel to the first direction. A stacker, packaging device (such as a shrink wrap machine), 90.degree. conveyor, and/or turn table may also be utilized.
摘要:
Radio frequency identification labels are made in a high speed and effective manner in a variety of different ways utilizing a number of different sources of RFID inlets, each inlet including an antenna and a chip. A plurality of webs are matched together and RFID labels are die cut from the webs, to produce lined RFID labels. Alternatively linerless RFID labels are produced from a composite web with a release material on one face and pressure sensitive adhesive on the other, the labels formed by perforations in the web.
摘要:
Radio frequency identification labels are made in a high speed and effective manner in a variety of different ways utilizing a number of different sources of RFID inlets, each inlet including an antenna and a chip. A plurality of webs are matched together and RFID labels are die cut from the webs, to produce lined RFID labels. Alternatively linerless RFID labels are produced from a composite web with a release material on one face and pressure sensitive adhesive on the other, the labels formed by perforations in the web.
摘要:
An apparatus and method provide for the alternate manufacture of permanent adhesive or repositional linerless labels utilizing the same equipment. Indicia is applied such as by using a flexographic unit in which the print cylinders are immediately thrown-off the web when the unit is turned off. Coating stations apply a repositional adhesive and release coat in the construction of repositional adhesive labels, for example, using a flexo unit in which the print cylinder stays in contact with the web after the unit is turned off to wipe excess adhesive from the print cylinder. In the construction of permanent adhesive labels a coating station for applying a release coat and a release coat curing station, as well as a hot melt permanent adhesive application station, are also provided. The permanent adhesive is applied with a slotted die head having a heat uniformity of +/- five degrees F. across its length, and applies an even adhesive coat thickness of about 0.0005-0.001 inches to +/- about 0.0001 inches.
摘要:
Labels are provided with sequential numbers which are important in a number of different applications including whether or not there are enough labels left on a roll to perform various operations on the roll. Linerless labels in a spiral roll include an innermost label and an outermost label. Each label includes a substrate with an inner face primarily coated with pressure sensitive adhesive and an outer face coated with release material. The sequential numbers are typically unobtrusive, and are applied to one or both of the inner and outer faces, preferably on the substrate before the coatings are applied. Desirably the innermost label contains the lowest number (typically zero or one) and the outermost the highest. Various pattern coatings can be applied to the substrate, particularly for the adhesive, depending upon the particular application, including at the interface between labels to make them easier to cut at the interface without the blade sticking to adhesive. The sequential numbers may be provided at the non-adhesive interface, or on non-adhesive portions of separable side strips along the labels. A roll of conventional lined labels may be unwound, sequential numbers applied to the adhesive side, and wound up in a roll again. In the printing of labels to be used on pharmaceuticals, thermally sensitive labels may be used and a scanner under computer control used to verify the correctness of the numbers and other pharmaceutical indicia printed.
摘要:
A linerless label stacking assembly and procedure utilize a paddle wheel first conveyor having a rotatable central portion with a number of paddles extending generally radially outward from the central portion. The central portion is along a generally horizontal axis and is rotated about that axis at spaced time intervals in a first direction. Each paddle has first and second curved surfaces which engage the linerless labels for stacking. A second conveyor having a generally horizontal supporting surface is disposed at approximately the same vertical position as the first conveyor axis, and a rotary cut off device, or a similar individual label cutter, feeds linerless labels to the first conveyor one at a time. After a stack of predetermined size is formed on a paddle, a controller (which receives input from a sensor associated with the rotary cut off) controls motors to rotate the first conveyor and operate the second conveyor to advance a stack of labels away from the cut off device.
摘要:
A serrated rotary die having a minimum die cutback angle .theta., wherein ##EQU1## where CL DIST is the centerline distance between punch and die axes of rotation, ##EQU2## MD is a die internal diameter at the die teeth roots, and HT is the height of the die over midpoint.
摘要:
A method of detecting an alignment error includes the steps of controlling a first portion of one or more imaging units to image on a substrate a first plurality of substantially parallel lines extending along a first direction and a second plurality of substantially parallel lines extending along a second direction and controlling a second portion of one or more imaging units to image a third plurality of substantially parallel lines extending along the first direction and a fourth plurality of substantially parallel lines extending along the second direction. One or more distances between adjacent lines of the second plurality of lines are varied and one or more distances between adjacent lines of the fourth plurality of lines are varied. Further, the lines imaged by the first and second portions form an alignment pattern. The method further includes the steps of collecting data relating to the alignment pattern and analyzing the collected data to determine an alignment error between the first and second portions of the one or more imaging units.
摘要:
It is possible to accurately and conveniently determine the origin, contents, position, and/or destination of a reusable container (such as a tote or bin, particularly for a manufacturing process) by applying a permanent adhesive label with embedded programmable RFID to the reusable container at a location where the RFID may be detected and reprogrammed. The RFID is programmed with accurate variable information including relating to at least one of the origin, contents, position, and destination of the container, and at at least one location the variable information of the RFID is detected. After a first use of the reusable container it is reprogrammed with other accurate variable information, and the detecting and reprogramming are repeated multiple times. Preferably the label is of a substantially moisture impermeable material such as a plastic film, or synthetic paper.