摘要:
The present invention generally relates to medical devices, and more particularly to an improved medical imaging device. In one embodiment, an imaging device includes a drive shaft having proximal and distal ends received within the lumen; and an imaging transducer assembly. coupled to the distal end of the drive shaft and positioned at the distal portion of the elongate member. The imaging transducer assembly includes one or more imaging transducers formed with a piezoelectric composite plate using photolithography based micromachining.
摘要:
The present invention generally relates to medical devices, and more particularly to an improved medical imaging device. In one embodiment, an imaging device includes a drive shaft having proximal and distal ends received within the lumen; and an imaging transducer assembly coupled to the distal end of the drive shaft and positioned at the distal portion of the elongate member. The imaging transducer assembly includes one or more imaging transducers formed with a piezoelectric composite plate using photolithography based micromachining.
摘要:
The systems and methods described herein provide for a medical device insertable into the body of a living being having an imaging device with a layout that is adjustable from an undeployed layout, where the imaging device is insertable into the inner lumen of a medical device, to a larger deployed layout, where the imaging device preferably has a larger imaging aperture. The medical device can also include a flexible membrane coupled with or located on the distal end of the medical device. The flexible membrane can be expanded or inflated to create a spatial operating region for the deployed imaging device.
摘要:
The present invention generally relates to medical devices, and more particularly to an improved medical imaging device. In one embodiment, an imaging device includes a drive shaft having proximal and distal ends received within the lumen; an imaging transducer coupled to the distal end of the drive shaft and positioned at the distal portion of the elongate member; and a flow detector coupled to the imaging transducer. The flow detector may include a forward facing ultrasound transducer configured to emit energy in the direction of the longitudinal axis of the imaging device and detect a Doppler shift in the received echoes. In the case where the imaging device is located in a vessel having blood flow, such information may be used to calculate the velocity of the blood flow. The imaging device may be configured to be located in a catheter or guidewire.
摘要:
The present invention is generally directed towards an imaging transducer assembly. Generally, the imaging transducer assembly includes an imaging transducer located within the lumen of a sheath, wherein the sheath is configured such that an energy beam emitted from the imaging transducer narrows as it exits the sheath, resulting in an image with a higher resolution.
摘要:
Provided herein are composite passive layers for ultrasound transducers having acoustic properties that can be easily tailored to the needs of the transducer application using current microfabrication techniques. In an embodiment, a passive layer comprises metal posts embedded in a polymer matrix or other material. The acoustic properties of the passive layer depend on the metal/polymer volume fraction of the passive layer, which can be easily controlled using current microfabrication techniques, e.g., integrated circuit (IC) fabrication techniques. Further, the embedded metal posts provide electrical conduction through the passive layer allowing electrical connections to be made to an active element, e.g., piezoelectric element, of the transducer through the passive layer. Because the embedded metal posts conduct along one line of direction, they can be used to provide separate electrical connections to different active elements in a transducer array through the passive layer.
摘要:
A method of making an ultrasound transducer includes providing a piezoelectric crystal of PIN-PMN-PT (lead indium niobate-lead magnesium niobate-lead titanate) and etching kerfs into the piezoelectric crystal using a laser. In at least some embodiments, each kerf has a width of no more than 4 μm. The kerfs are filled with a non-piezoelectric material to form an array of piezoelectric elements.
摘要:
The present invention generally relates to medical devices, and more particularly to an improved intravascular device. In one embodiment, an intravascular device includes a catheter having proximal and distal portions, and a phased array of imaging elements, having edge elements each having angles of emission, located in the distal portion of the catheter, wherein the phased array is concaved having a radius of curvature such that when the phased array is steered in a maximal azimuthal direction, the angles of emission of the edge elements are substantially similar.
摘要:
Provided herein are composite passive layers for ultrasound transducers having acoustic properties that can be easily tailored to the needs of the transducer application using current microfabrication techniques. In an embodiment, a passive layer comprises metal posts embedded in a polymer matrix or other material. The acoustic properties of the passive layer depend on the metal/polymer volume fraction of the passive layer, which can be easily controlled using current microfabrication techniques, e.g., integrated circuit (IC) fabrication techniques. Further, the embedded metal posts provide electrical conduction through the passive layer allowing electrical connections to be made to an active element, e.g., piezoelectric element, of the transducer through the passive layer. Because the embedded metal posts conduct along one line of direction, they can be used to provide separate electrical connections to different active elements in a transducer array through the passive layer.
摘要:
Provided herein are composite passive layers for ultrasound transducers having acoustic properties that can be easily tailored to the needs of the transducer application using current microfabrication techniques. In an embodiment, a passive layer comprises metal posts embedded in a polymer matrix or other material. The acoustic properties of the passive layer depend on the metal/polymer volume fraction of the passive layer, which can be easily controlled using current microfabrication techniques, e.g., integrated circuit (IC) fabrication techniques. Further, the embedded metal posts provide electrical conduction through the passive layer allowing electrical connections to be made to an active element, e.g., piezoelectric element, of the transducer through the passive layer. Because the embedded metal posts conduct along one line of direction, they can be used to provide separate electrical connections to different active elements in a transducer array through the passive layer.