摘要:
A method of depositing a duffusion barrier layer with overlying conductive layer or fill which lowers resistivity of a semiconductor device interconnect. The lower resistivity is achieved by inducing the formation of alpha tantalum within a tantalum-comprising barrier layer.
摘要:
A metal/metal nitride barrier layer for semiconductor device applications. The barrier layer is particularly useful in contact vias where high conductivity of the via is important, and a lower resistivity barrier layer provides improved overall via conductivity.
摘要:
We have discovered a method of providing a thin, approximately from about 2 Å to about 100 Å thick TaN seed layer, which can be used to induce the formation of alpha tantalum when tantalum is deposited over the TaN seed layer. Further, the TaN seed layer exhibits low resistivity, in the range of 30 μΩcm and can be used as a low resistivity barrier layer in the absence of an alpha tantalum layer. In one embodiment of the method, a TaN film is altered on its surface to form the TaN seed layer. In another embodiment of the method, a Ta film is altered on its surface to form the TaN seed layer.
摘要翻译:我们已经发现了一种提供大约从大约2埃到大约100埃的Ta N种子层的薄的方法,其可以在钽沉积在Ta上时用于诱导形成α钽 N种子层。 此外,Ta N N种子层在30微米范围内显示低电阻率,并且可以在不存在α钽层的情况下用作低电阻率阻挡层。 在该方法的一个实施方案中,在其表面上改变TaN膜以形成Ta N N种子层。 在该方法的另一个实施方案中,在其表面上改变Ta膜以形成Ta N N种子层。
摘要:
We disclose a method of depositing a metal seed layer on a wafer substrate comprising a plurality of recessed device features. The method comprises depositing a first portion of the metal seed layer on the wafer via plasma deposition at a sufficient ratio of wafer substrate bias to DC source power that bottom coverage is achieved while resputtering of surfaces of the recessed device features is inhibited. The method also comprises depositing a second portion of the metal seed layer at a ration of substrate RF bias to DC source power such that resputtering is not inhibited.
摘要:
We disclose a method of applying a sculptured layer of material on a semiconductor feature surface using ion deposition sputtering, wherein a surface onto which the sculptured layer is applied is protected to resist erosion and contamination by impacting ions of a depositing layer, A first protective layer of material is deposited on a substrate surface using traditional sputtering or ion deposition sputtering, in combination with sufficiently low substrate bias that a surface onto which the layer is applied is not eroded away or contaminated during deposition of the protective layer. Subsequently, a sculptured second layer of material is applied using ion deposition sputtering at an increased substrate bias, to sculpture a shape from a portion of the first protective layer of material and the second layer of depositing material. The method is particularly applicable to the sculpturing of barrier layers, wetting layers, and conductive layers upon semiconductor feature surfaces.
摘要:
We disclose a method of depositing a metal seed layer on a wafer substrate comprising a plurality of recessed device features. The method comprises depositing a first portion of a copper seed layer on a wafer substrate without excessive build-up on the openings of each of the plurality of recessed device features, while obtaining bottom coverage without substantial sputtering of the bottom surface. The method also comprises depositing a second portion of the metal seed layer while redistributing at least a portion of the bottom coverage material to the sidewalls of each recessed device feature, to provide a uniform seed layer coverage over the interior surface of the recessed device features.
摘要:
We disclose a method of applying a sculptured layer of material on a semiconductor feature surface using ion deposition sputtering, wherein a surface onto which the sculptured layer is applied is protected to resist erosion and contamination by impacting ions of a depositing layer. A first protective layer of material is deposited on a substrate surface using traditional sputtering or ion deposition sputtering, in combination with sufficiently low substrate bias that a surface onto which the layer is applied is not eroded away or contaminated during deposition of the protective layer. Subsequently, a sculptured second layer of material is applied using ion deposition sputtering at an increased substrate bias, to sculpture a shape from a portion of the first protective layer of material and the second layer of depositing material. The method is particularly applicable to the sculpturing of barrier layers, wetting layers, and conductive layers upon semiconductor feature surfaces.
摘要:
A method of depositing a metal seed layer with underlying barrier layer on a wafer substrate comprising a plurality of recessed device features. A first portion of the barrier layer is deposited on the wafer substrate without excessive build-up of barrier layer material on the openings to the plurality of recessed device features, while obtaining bottom coverage without substantial sputtering of the bottom surface. Subsequently, a metal seed layer is deposited using the same techniques used to deposit the barrier layer, to avoid excessive build up of metal seed layer material on the openings to the features, with minimal sputtering of the barrier layer surface.
摘要:
We disclose a method of depositing a metal seed layer on a wafer substrate comprising a plurality of recessed device features. The method comprises depositing a first portion of a copper seed layer on a wafer substrate without excessive build-up on the openings of each of the plurality of recessed device features, while obtaining bottom coverage without substantial sputtering of the bottom surface. The method also comprises depositing a second portion of the metal seed layer while redistributing at least a portion of the bottom coverage material to the sidewalls of each recessed device feature, to provide a uniform seed layer coverage over the interior surface of the recessed device features.
摘要:
A method of applying a sculptured copper seed layer on a semiconductor feature surface using ion deposition sputtering. A first protective layer of material is deposited on a substrate surface using traditional sputtering or ion deposition sputtering, in combination with sufficiently low substrate bias that a surface onto which the layer is applied is not eroded away or contaminated during deposition of the protective layer. Subsequently, a sculptured second layer of material is applied using ion deposition sputtering at an increased substrate bias, to sculpture a shape from a portion of the first protective layer of material and the second layer of depositing material.