摘要:
A method of determining a model of a marker includes obtaining projection images, each of the projection images having an image of a marker that indicates a shape of the marker, determining binary images of the marker for respective ones of the projection images, and constructing a three-dimensional model of the marker using the binary images, the three-dimensional model comprising a set of voxels in a three-dimensional space that collectively indicates a three-dimensional shape of the marker, wherein the act of constructing the three-dimensional model is performed using a processing unit.
摘要:
A method of determining a model of a marker includes obtaining projection images, each of the projection images having an image of a marker that indicates a shape of the marker, determining binary images of the marker for respective ones of the projection images, and constructing a three-dimensional model of the marker using the binary images, the three-dimensional model comprising a set of voxels in a three-dimensional space that collectively indicates a three-dimensional shape of the marker, wherein the act of constructing the three-dimensional model is performed using a processing unit.
摘要:
There is disclosed a method for estimating the position of a target in a body of a subject. The method includes, receiving an external signal that is related with motion of the target; and using a model of a correlation between the external signal and the motion of the target to estimate the position of the target, wherein said position estimation includes an estimate of three dimensional location and orientation of the target. The method further includes periodically receiving a 2-dimensional projection of the target; and updating the model of correlation between the external signal and the motion of the target based on a comparison of the estimated position of the target and the 2-dimensional projection of the target. The method is used in guided radiation therapy.
摘要:
Motion artifacts and patient dose during 4D CT imaging are reduced by adaptive control of data acquisition. The respiration signal (310) and CT data acquisition (340) are linked, such that ‘bad’ data from erratic breathing cycles that cause artifacts is not acquired by pausing CT data acquisition (360) when erratic breathing is detected, and not resuming CT data acquisition until steady-state respiration is resumed. Training data is used to develop a tolerance envelope for a respiratory signal such that for erratic breathing cycles the respiratory signal is not within the tolerance envelope (330).
摘要:
An improved method and apparatus for respiratory audio-visual biofeedback are disclosed. A guide patterned after a breathing cycle comfortable to the patient serves as a target. The target is displayed as a bar moving vertically upward during inhale and vertically downward during exhale, between fixed end ex-hale and end in-hale limits. The patient's current respiratory position is also displayed as a bar, oriented parallel to the target bar so that the difference between the current position and the target position is easy for the patient to see.
摘要:
The present invention is concerned with a method and system for guiding a radiation therapy system. The method comprises: capturing an image of a target area to which radiation is to be delivered; analysing the image with a trained convolutional neural network to determine the position of one or more objects of interest present in the target area; and outputting the determined position/s to the radiation therapy system.
摘要:
An improved method and apparatus for respiratory audio-visual biofeedback are disclosed. A guide patterned after a breathing cycle comfortable to the patient serves as a target. The target is displayed as a bar moving vertically upward during inhale and vertically downward during exhale, between fixed end ex-hale and end in-hale limits. The patient's current respiratory position is also displayed as a bar, oriented parallel to the target bar so that the difference between the current position and the target position is easy for the patient to see.
摘要:
Computed axial tomography images of different respiratory phases of lungs are obtained, where the intensity of the image measures lung density. One image is deformed to the coordinate space of the other image, and the differences between the intensity values of the other image as compared to the mapped image are evaluated as measures of ventilation.