摘要:
A method of forming high strength glass fibers in a glass melter substantially free of platinum or other noble metal materials, products made there from and batch compositions suited for use in the method are disclosed. One glass composition for use in the present invention includes 50-75 weight % SiO2, 13-30 weight % Al2O3, 5-20 weight % MgO, 0-10 weight % CaO, 0 to 5 weight % R2O where R2O is the sum of Li2O, Na2O and K2O, has a higher fiberizing temperature, e.g. 2400-2900° F. (1316-1593° C.) and/or a liquidus temperature that is below the fiberizing temperature by as little as 45° F. (25° C.). Another glass composition for use in the method of the present invention is up to about 64-75 weight percent SiO2, 16-24 weight percent Al2O3, 8-12 weight percent MgO and 0.25-3 weight percent R2O, where R2O equals the sum of Li2O, Na2O and K2O, has a fiberizing temperature less than about 2650° F. (1454° C.), and a ΔT of at least 80° F. (45° C.). A forehearth for transporting molten glass from the glass melter to a forming position is disclosed. By using furnaces and/or forehearths substantially free of platinum or other noble metal materials, the cost of production of glass fibers is significantly reduced in comparison with the cost of fibers produced using a melting furnace lined with noble metal materials. High strength composite articles including the high strength glass fibers are also disclosed.
摘要:
A method of forming high strength glass fibers in a glass melter substantially free of platinum or other noble metal materials, products made there from and batch compositions suited for use in the method are disclosed. One glass composition for use in the present invention includes 50-75 weight % SiO2, 13-30 weight % Al2O3, 5-20 weight % MgO, 0-10 weight % CaO, 0 to 5 weight % R2O where R2O is the sum of Li2O, Na2O and K2O, has a higher fiberizing temperature, e.g. 2400-2900° F. (1316-1593° C.) and/or a liquidus temperature that is below the fiberizing temperature by as little as 45° F. (25° C.). Another glass composition for use in the method of the present invention is up to about 64-75 weight percent SiO2, 16-24 weight percent Al2O3, 8-12 weight percent MgO and 0.25-3 weight percent R2O, where R2O equals the sum of Li2O, Na2O and K2O, has a fiberizing temperature less than about 2650° F. (1454° C.), and a ΔT of at least 80° F. (45° C.). A forehearth for transporting molten glass from the glass melter to a forming position is disclosed. By using furnaces and/or forehearths substantially free of platinum or other noble metal materials, the cost of production of glass fibers is significantly reduced in comparison with the cost of fibers produced using a melting furnace lined with noble metal materials. High strength composite articles including the high strength glass fibers are also disclosed.
摘要:
Forehearths that create a substantially homogeneous temperature to molten glass forming materials across the end position are provided. A gas cavity, a weir, a refractory block, or a heating element in the forehearth may be utilized to reduce a temperature gradient of molten glass forming materials across the end position. Reducing the temperature difference of the molten glass forming material across the end position permits for improved chemical and physical properties of the glass fibers and the end products formed from the glass fibers. In addition, a reduction in the temperature gradient across the end position produces a more homogenous glass fiber and glass product. Further, a reduction in the shear break rate occurs when the molten glass forming material has a temperature that is substantially the same across the end position, which results in a reduction in the breakage of glass fibers and an increase in manufacturing efficiency.
摘要:
Forehearths that create a substantially homogeneous temperature to molten glass forming materials across the end position are provided. A gas cavity, a weir, a refractory block, or a heating element in the forehearth may be utilized to reduce a temperature gradient of molten glass forming materials across the end position. Reducing the temperature difference of the molten glass forming material across the end position permits for improved chemical and physical properties of the glass fibers and the end products formed from the glass fibers. In addition, a reduction in the temperature gradient across the end position produces a more homogenous glass fiber and glass product. Further, a reduction in the shear break rate occurs when the molten glass forming material has a temperature that is substantially the same across the end position, which results in a reduction in the breakage of glass fibers and an increase in manufacturing efficiency.
摘要:
Forehearths that create a substantially homogeneous temperature to molten glass forming materials across the end position are provided. A gas cavity, a weir, a refractory block, or a heating element in the forehearth may be utilized to reduce a temperature gradient of molten glass forming materials across the end position. Reducing the temperature difference of the molten glass forming material across the end position permits for improved chemical and physical properties of the glass fibers and the end products formed from the glass fibers. In addition, a reduction in the temperature gradient across the end position produces a more homogenous glass fiber and glass product. Further, a reduction in the shear break rate occurs when the molten glass forming material has a temperature that is substantially the same across the end position, which results in a reduction in the breakage of glass fibers and an increase in manufacturing efficiency.
摘要:
A fiber-forming bushing comprises a tip plate and a lateral support. The tip plate comprises at least two tip sections and the section spacing between the tip sections. The lateral support extends laterally along the section spacing.
摘要:
A glass fiberizing system includes a melter having a bottom wall with one or more openings through which molten glass flows. A bushing is located below the melter for containing a body of molten glass and for feeding molten glass to a fiberizing apparatus. A melter flow guide is positioned between the melter and the bushing. The melter flow guide has at least one guide wall positioned near the opening in the melter and extending into the body of molten glass in the bushing. The guide wall intercepts the molten glass exiting from the openings and prevents a free-fall of the molten glass into the body of glass in the bushing.
摘要:
A fiber forming bushing comprises a baseplate having at least one hole and a bushing tip that is formed separately from the baseplate, supported in the hole in the baseplate, and welded to the baseplate. The bushing tip has an upper end and a lower end, and comprises a flange at the upper end of the bushing tip. A tapered entrance is provided at the upper end adjacent the flange. An upper cylindrical portion is provided adjacent the tapered entrance. A tapered middle portion is provided adjacent the upper cylindrical portion. A lower cylindrical portion is provided adjacent the tapered middle and extended to at outlet at the lower end of the bushing tip.