摘要:
A method of combustor cycle air flow adjustment for a gas turbine engine according to the present invention solves the problem of a higher flame temperature in the combustor, thereby affecting the emission levels when a heat-recuperated air flow cycle is used to increase the compressed air temperature. In low emission combustors this impact is severe because emission levels are significantly dependent on the primary combustion zone flame temperature. The method of the present invention includes a step of changing a geometry of an air flow passage and thereby changing distribution of a total air mass flow between an air mass flow for combustion and an air mass flow for cooling in order to ensure that flame temperature in a primary combustion zone of a combustor are maintained substantially the same whether the gas turbine engine is manufactured to operate as a simple air flow cycle engine or as a heat-recuperated air flow cycle engine. In an embodiment of the present invention, the changing of the geometry of the air flow passage by changing the number and size of perforations in an impingement cooling skin so that with minimal changes the impingement cooling skin serves duel purposes both as a cooling device for cooling the combustor wall and as a valve means for combustor cycle air flow adjustment, which makes the method simple and economical.
摘要:
A method of combustor cycle air flow adjustment for a gas turbine engine according to the present invention solves the problem of a higher flame temperature in the combustor, thereby affecting the emission levels when a heat-recuperated air flow cycle is used to increase the compressed air temperature. In low emission combustors this impact is severe because emission levels are significantly dependent on the primary combustion zone flame temperature. The method of the present invention includes a step of changing a geometry of an air flow passage and thereby changing distribution of a total air mass flow between an air mass flow for combustion and an air mass flow for cooling in order to ensure that flame temperature in a primary combustion zone of a combustor are maintained substantially the same whether the gas turbine engine is manufactured to operate as a simple air flow cycle engine or as a heat-recuperated air flow cycle engine. In an embodiment of the present invention, the changing of the geometry of the air flow passage by changing the number and size of perforations in an impingement cooling skin so that with minimal changes the impingement cooling skin serves duel purposes both as a cooling device for cooling the combustor wall and as a valve means for combustor cycle air flow adjustment, which makes the method simple and economical.
摘要:
A cyclone combustor of the present invention uses a novel pre-mixture injection scheme to optimize performance. The cyclone combustor includes a cylindrical combustor can and three fuel/air premixing tubes entering the combustor can radially, with a tangential offset. The tangential offset is designed to provide an optimized circulation in the combustor can for improvement of liner life span, flame stability and engine turn-down. The ignition and pilot fuel systems are placed to take advantage of the premixing tube entry locations and the tangential direction of the mixture flow momentum in the combustor can. The special combination of the parallel axes of the combustor can and the mixing tubes provides a right angle between an outlet section and the major tube section of each premixing tube. The cyclone combustor of the present invention can meet the requirements for low NOx and CO emissions.
摘要:
Gas turbine combustion systems and fuel cartridge assemblies are provided. An exemplary combustion system may comprise a combustor including one or more components, such as a cylindrical combustion liner, a flow sleeve, a main mixer, a radial inflow swirler, a combustor dome, and a fuel cartridge assembly. An exemplary fuel cartridge assembly may comprise first and second fuel manifolds which are connected to respective fuel circuits which supply fuel, such as liquid fuel, through a plurality of fuel passages within the fuel cartridge assembly or to other locations within an associated combustor. The fuel cartridge assembly may further include a plurality of fuel injector tips located at a tip plate of the fuel cartridge assembly through which fuel may be supplied to an associated combustor.
摘要:
Methods and systems are provided for dynamically auto-tuning a gas turbine engine. Initially, parameters of the gas turbine engine are monitored to determine that they are within predefined upper and lower limits such that a margin exists. A first incremental adjustment of an inlet guide vane (IGV) angle is performed. If the monitored parameters are still within the predefined upper and lower limits, a second incremental adjustment of the IGV angle is performed. It is determined that the monitored parameters are still within the predefined upper and lower limits. Additionally, it is determined that a predefined value of the IGV angle has been reached such that the IGV angle is not to be further increased or decreased.
摘要:
Gas turbine combustion systems and fuel cartridge assemblies are provided. An exemplary combustion system may comprise a combustor including a cylindrical combustion liner, a flow sleeve, a main mixer, a radial inflow swirler, a combustor dome, and a fuel cartridge assembly. An exemplary combustor and/or fuel cartridge assembly may comprise first and second fuel circuits or manifolds. Methods and systems are also provided for staging and controlling a flow of fuel and/or water through different fuel circuits and pilot injectors, to allow purging and ignition using different fuel circuits, pilot injectors, and fuel sources.
摘要:
Systems and methods for dual-fuel operation of a gas turbine combustor are provided. An exemplary gas turbine combustor may comprise one or more components, such as a cylindrical combustion liner, a flow sleeve, a main mixer, a radial inflow swirler, a combustor dome, and a fuel cartridge assembly, one or more of which may be configured to supply either a gaseous or a liquid fuel to the combustion liner, depending on whether gaseous fuel operation or liquid fuel operation of the combustor is desired.
摘要:
The present invention discloses a novel way of controlling a gas turbine engine using detected temperatures and detected turbine rotor speed. An operating system provides a series of operating modes for a gas turbine combustor through which fuel is staged to gradually increase engine power, yet harmful emissions, such as carbon monoxide, are kept within acceptable levels.
摘要:
Methods and systems are provided for automatically tuning a combustor of a gas turbine engine during a transient period, such as when a state of the gas turbine engine is changing. Once it has been determined whether the state of the gas turbine engine is changing, it is then determined whether a lean blowout is imminent, which is based conditions being monitored. A stability bias is applied to the system if either the state is changing or if lean blowout is imminent until the lean blowout is no longer determined to be imminent. The stability bias monitors operating conditions of the gas turbine engine and determines when one of the operating conditions has overcome a threshold value. Once a threshold value is overcome, a fuel flow fraction is adjusted by a predefined increment. The application of the stability bias is gradually terminated once it is determined that the lean blowout is no longer imminent.
摘要:
A system and method for removing at least carbon from a fuel/air mixture prior to injection of the fuel/air mixture into a combustion system is disclosed. The system fully integrates the combined cycle power plant with carbon scrubbing of the fuel/air mixture to increase overall cycle efficiency while capturing carbon from the cycle. A portion of the compressed air source generated by the gas turbine compressor is provided to a premixer where it is mixed with a natural gas to form a fuel/air mixture. The fuel/air mixture passes through a catalytic partial oxidation (CPOX) reactor, which utilizes a precious metal to partially oxidize the hydrocarbons into carbon monoxide. The mixture passes through a shift reactor to complete generation of carbon dioxide and raise hydrogen yield of the fuel/air mixture. Carbon constituents are then removed from the mixture by a separator.