摘要:
A method and resulting device for reducing an electrical field at an isolation gap in a capacitive actuator includes providing a bottom electrode layer and forming a pattern in the bottom electrode layer having an isolation gap between center and outer electrode components of the patterned electrode. A spacing material is deposited in the isolation gap, the spacing material having a greater height than a remainder of the patterned electrode, and a sacrificial material is deposited conformably on a surface of the patterned electrode and spacing material. The method also includes applying a deformable electrode to a surface of the sacrificial material, whereby removal of the sacrificial and spacing materials results in a greater spacing between the deformable electrode and the electrode layer at a region of the isolation gap than over a remainder of the spacing between the patterned electrode layer and deformable surface.
摘要:
Exemplary embodiments provide materials, systems and methods for ink jet printhead, wherein a low-adhesion coating can be applied to at least one surface portion of an ink chamber within the printhead to reduce or eliminate actuator membrane damage during ink freeze/thaw cycles.
摘要:
A chip used for dispensing a fluid such as ink provides ink-dispensing ejectors having an ink cavity over a supporting substrate, and further provides a heater for heating the ink in the cavity. The heater can be interposed between the substrate and the ink cavity to provide direct heating of ink as it is being dispensed. Various embodiments further comprise the use of the heater structure as a temperature probe to measure the temperature of the ink in the ink cavity. Other embodiments provides a chip having both a temperature probe and a heater as separate structures interposed between the ink cavity and the substrate. Further described is a temperature probe and/or heater which traverses a majority of a width of a substrate, and surrounds each drop ejector on at least two sides.
摘要:
A nozzle plate for an inkjet printhead, the nozzle plate including a nozzle through which ink is ejected, the nozzle optimally positioned in the nozzle plate. The nozzle plate further including at least one priming hole, the priming hole distinct from and of a smaller diameter than the nozzle, the priming holes positioned at selected locations of the nozzle plate to purge air from the ink jet print head.
摘要:
A chip used for dispensing a fluid such as ink provides ink-dispensing ejectors having an ink cavity over a supporting substrate, and further provides a heater for heating the ink in the cavity. The heater can be interposed between the substrate and the ink cavity to provide direct heating of ink as it is being dispensed Various embodiments further comprise the use of the heater structure as a temperature probe to measure the temperature of the ink in the ink cavity. Other embodiments provides a chip having both a temperature probe and a heater as separate structures interposed between the ink cavity and the substrate. Further described is a temperature probe and/or heater which traverses a majority of a width of a substrate, and surrounds each drop ejector on at least two sides.
摘要:
In accordance with the invention, there are micro-electromechanical devices and methods of fabricating them. An exemplary micro-electromechanical device can include a first dielectric layer; a buried conductive trace disposed over the first dielectric layer, such that the buried conductor trace is electrically connected to an outside power source; a second dielectric layer disposed over the buried conductive trace; at least one conductive electrode disposed over the second dielectric layer and electrically connected to the buried conductive trace; and at least one conductive membrane including membrane anchors disposed over the second dielectric layer, such that the at least one conductive membrane is electrically isolated from the at least one conductive electrode and the buried conductor trace, wherein the at least one conductive electrode is electrically connected to the power source through the buried conductive trace.