摘要:
The disclosure relates generally to embodiments of systems and methods of spinal stabilization. Embodiments include methods that use a dilator to displace tissue proximate to a sleeve. An embodiment of a surgical system can comprise a dilator that may define a working channel from a first opening to a second opening. The dilator can be positioned to displace tissue proximate to the sleeve. The dilator may be shaped to allow a first end of an elongated member to enter the working channel through the first opening and exit the dilator through the second opening to be percutaneously moved to another assembly.
摘要:
The disclosure relates generally to embodiments of systems and methods of spinal stabilization. Embodiments include methods that use a dilator to displace tissue proximate to a sleeve. An embodiment of a surgical system can comprise a dilator that may define a working channel from a first opening to a second opening. The dilator can be positioned to displace tissue proximate to the sleeve. The dilator may be shaped to allow a first end of an elongated member to enter the working channel through the first opening and exit the dilator through the second opening to be percutaneously moved to another assembly.
摘要:
The disclosure relates generally to embodiments of systems and methods of spinal stabilization. Embodiments include methods that use a dilator to displace tissue proximate to a sleeve. An embodiment of a surgical system can comprise a dilator that may define a working channel from a first opening to a second opening. The dilator can be positioned to displace tissue proximate to the sleeve. The dilator may be shaped to allow a first end of an elongated member to enter the working channel through the first opening and exit the dilator through the second opening to be percutaneously moved to another assembly.
摘要:
Embodiments disclosed herein provide compression/distraction methods and tools useful for fitting a spinal stabilization system in a patient through minimally invasive surgery. The spinal stabilization system may comprise screws anchored in vertebrae. The vertebrae may need to be compressed or distracted. One embodiment of an instrument disclosed herein may comprise a shaft for engaging one of the screws through an extender sleeve. A driver may engage another screw through an opening of the instrument. Through this engagement, a surgeon may use the rack and pinion of the instrument to compress or distract one or more levels of the vertebrae in a parallel motion, which can be advantageous clinically in certain situations.
摘要:
Embodiments of a geared spinal implant inserter-distractor disclosed herein provide a greater mechanical advantage in delivering an intervertebral implant via an anterior, anterior-lateral, or posterior approach. The geared spinal implant inserter-distractor comprises an inserter, a distractor structured to slidably receive the inserter with a collar and an intervertebral implant attached thereto, and a gear mechanism arranged to translate a surgeon's rotational motion into linear motion, allowing the surgeon to have a greater control and feedback when placing an implant within an intervertebral disc space. The gear arrangement comprises a pinion inside the distractor and a rack on the inserter. The pinion can be driven by a shaft connected to a knob or handle. With the gear mechanism, a surgeon can turn the knob or handle to drive the inserter in and out of the distractor in a quantifiable manner, which facilitates the desirable precision delivery of the intervertebral implant.
摘要:
A poly-axial bone fastener assembly having a collar and a bone fastener can be coaxially locked to prevent poly-axial movements of the collar relative to the bone fastener while permitting the collar to rotate about an axis of the bone fastener, thereby combining the functions and advantages of a poly-axial bone screw and a fixed angle bone screw. Some embodiments of a coaxial locking mechanism may include a c-clip with a locking pin, a c-clip with hooks, a split ring with square corners, a pin that spins inside the collar, pins that travel about a neck of the bone fastener, a coaxially locking top that screws into the collar over a head of the bone fastener, and a top nut that threads onto the head of the bone fastener inside the collar to trap a flange of the collar between a shoulder of the bone fastener and the top nut.
摘要:
Embodiments described herein provide tools and methods for spinal fusion procedures. One embodiment of a tool can be a pedicle access tool that performs the functions of targeting needle, cannula, tap and awl. The cannula of the tool can be used to guide various tools and bone graft or fusion promoting material to a surgical site for a spinal fusion procedure, such as a posterolateral procedure. In other embodiments, a k-wire can be used as the guide.
摘要:
A poly-axial bone fastener assembly having a collar and a bone fastener can be coaxially locked to prevent poly-axial movements of the collar relative to the bone fastener while permitting the collar to rotate about an axis of the bone fastener, thereby combining the functions and advantages of a poly-axial bone screw and a fixed angle bone screw. Some embodiments of a coaxial locking mechanism may include a c-clip with a locking pin, a c-clip with hooks, a split ring with square corners, a pin that spins inside the collar, pins that travel about a neck of the bone fastener, a coaxially locking top that screws into the collar over a head of the bone fastener, and a top nut that threads onto the head of the bone fastener inside the collar to trap a flange of the collar between a shoulder of the bone fastener and the top nut.
摘要:
Embodiments described herein provide systems and methods for inserting a spinal stabilization rod. A rod insertion tool can include a body defining a passage, a pivot rod disposed in the passage and a rod retaining member. Movement of the pivot rod can cause the rod retaining member to rotate and consequently the spinal stabilization rod to rotate. The rod insertion tool can be sized to fit through channels in sleeves used during implantation of a spinal stabilization system.
摘要:
Embodiments disclosed herein provide a combination compressor/distractor useful for fitting a spinal stabilization system in a patient through minimally invasive surgery. The spinal stabilization system may comprise screws anchored in vertebrae. The vertebrae may need to be compressed or distracted. One embodiment of an instrument disclosed herein may comprise a shaft for engaging one of the screws through an extender sleeve. A driver may engage another screw through an opening of the instrument. Through this engagement, a surgeon may use the rack and pinion of the instrument to compress or distract one or more levels of the vertebrae in a parallel motion, which can be advantageous clinically in certain situations.