摘要:
Provided is a valve device into which a cone type venturi for a flow measurement and valves are integrated. According to the present invention, the venturi cone is formed in venturi path in the lower portion of the main body, and then valve path is formed thereafter. According to the present invention, efforts for adjusting heights between both of pressure taps during connecting of valves and flow measurement parts are not required and installation time and costs of installation could be decreased drastically. Also, the possibilities of leakage as well as manufacturing costs also could be reduced by integrating valves and flow measurement parts into a one-body valve device.
摘要:
A cone type venturi integrated valve device includes a main body, a venturi cone, a valve path, and valves disposed in the valve path. The main body has a venturi path which penetrates though the main body in a horizontal direction and a hole which penetrates through the main body from the venturi path to a bottom of the main body, wherein the venturi path includes an inlet, an outlet, a first pressure point P1 at a distance from the inlet, and a second pressure point P2 at a distance from the outlet. The venturi cone is mounted between the first pressure point P1 and the second pressure point P2 in the venturi path of the main body. The venturi cone has a fixing leg bent downward and a bent end of the fixing leg is inserted into the hole of the main body and attached by welding.
摘要:
In the process for the production of liquid pig iron 943) or liquid steel pre-products from charging substances comprising iron ore (5) and fluxes and at least partially containing a portion of fines, the iron ore is directly reduced to sponge iron in at least two reduction stages (1, 2) by the fluidized bed method, the sponge iron is melted in a melt-down gasifying zone (39) under the supply of carbon carriers and an oxygen-containing gas, and a CO- and H2-containing reducing gas is produced which is injected into reduction zones of the reduction stages (1, 2), is reacted there, is withdrawn as a top gas and optionally is supplied to a consumer. To achieve uniform reduction of the iron ore at optimum exploitation of the reducing gas, the iron ore (5) in a first reduction stage (1) by aid of the reducing gas is fractionated into at least two fractions having different grain size distributions each, each fraction is reduced by the reducing gas in a separate fluidized bed (6, 15), wherein the reducing gas maintains a first fluidized bed (6) containing the coarse-grain fraction and separates the fine-grain fraction from the same, and wherein, further, reducing gas is additionally introduced into the further fluidized bed (15) directly reduced iron ore (5) is discharged both from the first and from the further fluidized bed (6, 15) and the fine- and the coarse-grain fraction reduced in the first reduction stage (1) are further reduced in at least one further reduction stage (2) operating in the same manner as the first reduction stage (1) and from the last reduction stage (2) the fine-grain fraction is introduced into the melt-down gasifying zone (39) while being agglomerated by provision of oxygen, and the coarse-grain fraction is fed directly into the melt-down gasifying zone (39) gravitationally (FIG. 1).
摘要:
In the process for the production of liquid pig iron 943) or liquid steel pre-products from charging substances comprising iron ore (5) and fluxes and at least partially containing a portion of fines, the iron ore is directly reduced to sponge iron in at least two reduction stages (1, 2) by the fluidized bed method, the sponge iron is melted in a melt-down gasifying zone (39) under the supply of carbon carriers and an oxygen-containing gas, and a CO- and H2-containing reducing gas is produced which is injected into reduction zones of the reduction stages (1, 2), is reacted there, is withdrawn as a top gas and optionally is supplied to a consumer. To achieve uniform reduction of the iron ore at optimum exploitation of the reducing gas, the iron ore (5) in a first reduction stage (1) by aid of the reducing gas is fractionated into at least two fractions having different grain size distributions each, each fraction is reduced by the reducing gas in a separate fluidized bed (6, 15), wherein the reducing gas maintains a first fluidized bed (6) containing the coarse-grain fraction and separates the fine-grain fraction from the same, and wherein, further, reducing gas is additionally introduced into the further fluidized bed (15) directly reduced iron ore (5) is discharged both from the first and from the further fluidized bed (6, 15) and the fine- and the coarse-grain fraction reduced in the first reduction stage (1) are further reduced in at least one further reduction stage (2) operating in the same manner as the first reduction stage (1) and from the last reduction stage (2) the fine-grain fraction is introduced into the melt-down gasifying zone (39) while being agglomerated by provision of oxygen, and the coarse-grain fraction is fed directly into the melt-down gasifying zone (39) gravitationally (FIG. 1).
摘要:
Disclosed herein is a rapid preparation process of aerogel. More specifically, the present invention relates to a rapid preparation process of aerogel which enables a considerable reduction in preparation time and preparation costs via simultaneous treatment of solvent exchange and surface-modification of hydrophilic-to-hydrophobic transition.The rapid preparation process comprises mixing a cation exchange resin with sodium silicate (water glass) as a starting material, and removing the sodium ion from the sodium silicate, to subject the sodium silicate to ion exchange; adding a base catalyst and an organosilane compound to the sodium silicate to subject the sodium silicate to gelation; aging the gellized silica gel at room temperature for 2 to 4 hours to discharge water from the silica gel and to modify the surface of the silica gel into hydrophobicity; and drying the hydrophobic silica gel at atmospheric pressure for 18 to 27 hours.
摘要:
In a process for the reduction of fine ore by reducing gas in the fluidized bed method, the following characteristic features are realized in order to achieve a uniform and even degree of metallization at optimum utilization of the reducing gas and while minimizing the amount of reducing gas employed, that the fine ore is fractionated by aid of the reducing gas into at least two fractions having different grain size distributions, that each fraction is reduced by the reducing gas in a separate fluidized bed, wherein the reducing gas maintains a first fluidized bed containing the coarse-grain fraction and separates the fine-grain fraction from the same, is accelerated together with the fine-grain fraction, subsequently under pressure release forms a further fluidized bed, into which it is continuously injected in a radially symmetrical manner and from below, and wherein, furthermore, secondary reducing gas additionally is directly injected into the further fluidized bed in a radially symmetrical manner, and that reduced ore is discharged from both the first and the second fluidized beds.