摘要:
Disclosed herein is a rapid preparation process of aerogel. More specifically, the present invention relates to a rapid preparation process of aerogel which enables a considerable reduction in preparation time and preparation costs via simultaneous treatment of solvent exchange and surface-modification of hydrophilic-to-hydrophobic transition.The rapid preparation process comprises mixing a cation exchange resin with sodium silicate (water glass) as a starting material, and removing the sodium ion from the sodium silicate, to subject the sodium silicate to ion exchange; adding a base catalyst and an organosilane compound to the sodium silicate to subject the sodium silicate to gelation; aging the gellized silica gel at room temperature for 2 to 4 hours to discharge water from the silica gel and to modify the surface of the silica gel into hydrophobicity; and drying the hydrophobic silica gel at atmospheric pressure for 18 to 27 hours.
摘要:
Disclosed herein is a method for producing a sheet including a silica aerogel, the method including (S1) gelling a water glass solution in a mixture of an alcohol and water to prepare a wet gel, (S2) hydrophobically modifying the surface of the wet gel with a non-polar organic solvent, an organosilane compound and an alcohol, (S3) dissolving the hydrophobically modified silica gel and a polymer in an aprotic organic solvent to prepare an electrospinning solution, and (S4) electrospinning the electrospinning solution to produce a fiber web including a silica aerogel, and a sheet in which a polymer and a silica aerogel coexist in the form of a fiber.
摘要:
The present disclosure relates to a thermal cracking resistant zeolite membrane and a method of fabricating the same. The method includes dissolving an alumina-based material, a silica-based material and sodium hydroxide in water to prepare an aqueous solution, stirring the aqueous solution to form a hydrothermal solution, preparing a slurry of zeolite seeds through wet-type vibration pulverization and centrifugal separation of zeolite powder, passing the zeolite seeds through a support by vacuum filtration such that the zeolite seeds can be infiltrated into an inner region of the support ranging from a depth of 3 μm to a depth corresponding to 50% of a total thickness of the support, and immersing the support into the hydrothermal solution for hydrothermal treatment to grow a dense zeolite separation layer not only on the surface of the support but also on the inner region thereof. The zeolite membrane prevents the occurrence of thermal cracking on the zeolite separation layer, thereby providing good thermal stability and separation performance during heating and at a target processing temperature.
摘要:
The present invention relates to a method of manufacturing a mat containing aerogel and to a mat manufactured using this method. A method of manufacturing a mat containing silica aerogel according to an aspect of the invention includes: (S1) producing a wet gel by mixing water glass and alcohol in a reactor; (S2) modifying a surface of the wet gel by adding an organic silane compound and an organic solvent to the reactor and mixing; (S3) separating a upper liquid from a solution in the reactor and impregnating a fibrous matrix with the upper liquid; and (S4) drying the fibrous matrix impregnated with the upper liquid. According to an aspect of the invention, a mat containing silica aerogel can be manufactured using only water glass as raw material, even when applying the drying process in an ambient environment, without using expensive materials or supercritical apparatus.
摘要:
The present invention relates to a method of manufacturing a mat containing aerogel and to a mat manufactured using this method. A method of manufacturing a mat containing silica aerogel according to an aspect of the invention includes: (S1) producing a wet gel by mixing water glass and alcohol in a reactor; (S2) modifying a surface of the wet gel by adding an organic silane compound and an organic solvent to the reactor and mixing; (S3) separating a upper liquid from a solution in the reactor and impregnating a fibrous matrix with the upper liquid; and (S4) drying the fibrous matrix impregnated with the upper liquid. According to an aspect of the invention, a mat containing silica aerogel can be manufactured using only water glass as raw material, even when applying the drying process in an ambient environment, without using expensive materials or supercritical apparatus.
摘要:
Disclosed herein is a method of manufacturing inorganic hollow yarns, such as cermets, oxide-non oxide composites, poorly sinterable non-oxides, and the like, at low costs. The method includes preparing a composition comprising a self-propagating high temperature reactant, a polymer and a dispersant, wet-spinning the composition through a spinneret to form wet-spun yarns, washing and drying the wet-spun yarns to form polymer-self propagating high temperature reactant hollow yarns, and heat-treating the polymer-self propagating high temperature reactant hollow yarns to remove a polymeric component from the polymer-self propagating high temperature reactant hollow yarns while inducing self-propagating high temperature reaction of the self-propagating high temperature reactant to form inorganic hollow yarns. The composition comprises 45˜60 wt % of the self-propagating high temperature reactant, 6˜17 wt % of the polymer, 0.1˜4 wt % of the dispersant, and the balance of an organic solvent.
摘要:
Disclosed herein is a method for producing a sheet including a silica aerogel, the method including (S1) gelling a water glass solution in a mixture of an alcohol and water to prepare a wet gel, (S2) hydrophobically modifying the surface of the wet gel with a non-polar organic solvent, an organosilane compound and an alcohol, (S3) dissolving the hydrophobically modified silica gel and a polymer in an aprotic organic solvent to prepare an electrospinning solution, and (S4) electrospinning the electrospinning solution to produce a fiber web including a silica aerogel, and a sheet in which a polymer and a silica aerogel coexist in the form of a fiber.