Abstract:
The invention relates to a method and device for supersonically injecting oxygen into a furnace, in particular a cupola furnace, in which the total oxygen required for the furnace operation is injected with the aid of two distinct circuits, i.e., the first circuit comprising at least one supersonic oxygen injecting nozzle and a second circuit which comprises additionally oxygen injecting means and is connected to the first circuit by pressure-sensitive means, such as a discharging device (or upstream pressure adjuster), in such a way that a stable pressure is obtained in the first circuit upon the attainment of the maximum flowrate thereof, wherein the first circuit can consists of several supersonic nozzle groups.
Abstract:
A computer-implemented method for an anonymous personalized recommendation is provided. The method includes receiving select server fingerprints selected from server fingerprints based on predetermined metrics. The server fingerprints correspond to a plurality of public entities and each server fingerprint includes encoded information about a corresponding public entity. The method also includes generating a user fingerprint based on user information associated with a user, the user fingerprint comprising encoded user information. The method further includes comparing the user fingerprint with the select server fingerprints to select a server fingerprint for recommendation, and generating a recommendation of a public entity corresponding to the server fingerprint for recommendation. Systems and machine-readable media are also provided.
Abstract:
The invention relates to a method of operating a furnace (1) comprising a flue pipe (11) for discharging the smoke, means (19) of introducing ambient air into the said flue pipe (11) and a smoke extractor (16) arranged in the said flue pipe (11). According to the method, the temperature of the smoke is measured at two points (31, 33), the temperature measured at the second point (33) is subtracted from the one measured at the first point (31), the result of the subtraction is compared with a datum value &Dgr;T, and the ratio of the flow rate of fuel to the flow rate of oxidizing agent introduced into the furnace (1) is decreased when the result of the subtraction is below the datum value &Dgr;T.
Abstract:
A device for atomizing a liquid fuel comprising a central liquid fuel feed passage for feeding with liquid fuel an outer atomizing-gas feed passage for feeding with atomizing gas, these being coaxial overall, an atomizing head extending said passages, the head being equipped for each fluid with one or more ducts which converge into one or more nozzles made in the head and emerging in a combustion region in which the nozzles release a mixture of atomized liquid fuel and of atomizing gas, which head is held at the end of the coaxial passages by a nut screwed onto a wall of the outer passage, wherein the central liquid-fuel feed passage is surrounded by the atomizing-gas feed passage and the atomizing head includes a skirt surrounding inlets to the ducts for the liquid fuel, which skirt is received inside the central passage and the skirt and the said passage respectively have externally and internally complementing cross sections.
Abstract:
The invention relates to a method for melting vitrifiable materials in a low-capacity oven, wherein at least part of the melting energy is supplied by two oxy-burners projecting into the melting chamber through the upstream wall and arranged on opposite sides of a vertical plane in which a longitudinal axis of the melting chamber is situated, in such a way as to create two flames, the respective injection axes thereof crossing at a distance from the upstream wall, between ⅓ and ¾ of the length L of the melting chamber.
Abstract:
The invention relates to a method and device for supersonically injecting oxygen into a furnace, in particular a cupola furnace, in which the total oxygen required for the furnace operation is injected with the aid of two distinct circuits, i.e., the first circuit comprising at least one supersonic oxygen injecting nozzle and a second circuit which comprises additionally oxygen injecting means and is connected to the first circuit by pressure-sensitive means, such as a discharging device (or upstream pressure adjuster), in such a way that a stable pressure is obtained in the first circuit upon the attainment of the maximum flowrate thereof, wherein the first circuit can consists of several supersonic nozzle groups.
Abstract:
Device for protecting an ejection outlet of a burner mounted through a wall of a furnace, comprising a peripheral heat shield around the ejection outlet of the burner comprising a consumable structure comprising a refractory material and a mounting for heat shield comprising a mover which moves the heat shield relative to the wall of the furnace, between at least two positions which are spaced apart along the axis of the burner.
Abstract:
A computer-implemented method for an anonymous personalized recommendation is provided. The method includes receiving select server fingerprints selected from server fingerprints based on predetermined metrics. The server fingerprints correspond to a plurality of public entities and each server fingerprint includes encoded information about a corresponding public entity. The method also includes generating a user fingerprint based on user information associated with a user, the user fingerprint comprising encoded user information. The method further includes comparing the user fingerprint with the select server fingerprints to select a server fingerprint for recommendation, and generating a recommendation of a public entity corresponding to the server fingerprint for recommendation. Systems and machine-readable media are also provided.
Abstract:
Fuel-fired furnace and a method for operating it, in which method: a main oxidizing agent is injected at a controlled flow rate into the combustion chamber of the furnace; the combustible material is burnt in the combustion chamber with the main oxidizing agent, producing thermal energy and flue gases at a temperature higher than 600° C.; the flue gases are removed via an exhaust duct, said removed flue gases possibly containing residual materials that could be oxidized, the exhaust duct being equipped with an inlet for a diluting oxidizing agent downstream of the combustion chamber; the residual materials that could be oxidized are burnt with the diluting oxidizing agent by means of a flame at the inlet for the diluting oxidizing agent; the flame intensity inside the exhaust duct is detected; and the flow rate at which the main oxidizing agent is injected into the combustion chamber is controlled according to the detected flame intensity.
Abstract:
The invention relates to a method for melting vitrifiable materials in a low-capacity oven, wherein at least part of the melting energy is supplied by two oxy-burners projecting into the melting chamber through the upstream wall and arranged on opposite sides of a vertical plane in which a longitudinal axis of the melting chamber is situated, in such a way as to create two flames, the respective injection axes thereof crossing at a distance from the upstream wall, between ⅓ and ¾ of the length L of the melting chamber.