摘要:
The invention relates to a method for proving authenticity of a prover PRV to a verifier VER, the method comprising generating a secret S using a physical token by the prover PRV. Obtaining a public value PV by the verifier, where the public value PV has been derived from the secret S using a function for which the inverse of said function is computationally expensive. The method further comprising a step for conducting a zero knowledge protocol between the prover PRV and the verifier VER in order to prove to the verifier VER, with a pre-determined probability, that the prover PRV has access to the physical token, where the prover PRV makes use of the secret S and the verifier VER makes use of the public value PV. The invention further relates to a system employing the method, and an object for proving authenticity.
摘要:
The invention relates to a method for proving authenticity of a prover PRV to a verifier VER, the method comprising generating a secret S using a physical token by the prover PRV. Obtaining a public value PV by the verifier, where the public value PV has been derived from the secret S using a function for which the inverse of said function is computationally expensive. The method further comprising a step for conducting a zero knowledge protocol between the prover PRV and the verifier VER in order to prove to the verifier VER, with a pre-determined probability, that the prover PRV has access to the physical token, where the prover PRV makes use of the secret S and the verifier VER makes use of the public value PV. The invention further relates to a system employing the method, and an object for proving authenticity.
摘要:
The invention relates to an optical identifier (30) for generating an identification signal in response to an incident radiation beam (12), and to a corresponding method. In order to provide an optical identifier (30) which can be produced by a simplified process and which has nevertheless a sufficient or even improved stability against environmental interferences it is proposed that said identifier comprises a carrier layer (32), at least partially transparent to said radiation beam (12), having a first scattering face (34) comprising a plurality of randomly oriented partial faces for scattering at least a part of said radiation beam (12), wherein said identification signal is formed by a scattered part of said radiation beam (12). Further, a device comprising said identifier, and a reading apparatus for identifying the identifier are proposed.
摘要:
The present invention relates to a method of authenticating, at a verifier (210), a device (101, 201) comprising a physical token (102), a system for performing authentication and a device comprising a physical token which provides measurable parameters. A basic idea of the present invention is to provide a secure authentication protocol in which a low-power device (101, 201), for example an RFID tag, comprising a physical token (102) in the form of a physical uncloneable function (PUF) is relieved from performing cryptographic operations or other demanding operations in terms of processing power. To this end, a PUF device (101, 201) to be authenticated verifies if it in fact is being queried by an authorized verifier. For instance, an RFID tag comprising a PUF (102) may be arranged in a banknote which a bank wishes to authenticate. This verification is based on the bank's unique ability to reveal concealed data, such as data having been created in an enrolment phase at which the RFID tag (or actually the PUF) was registered with the bank. Now, the RFID tag again challenges its PUF to create response data sent to the verifier. The verifier checks whether the response data is correct and, if so, authenticates the device comprising the physical token, since the device is able to produce response data that corresponds to response data concealed and stored in the enrolment phase.
摘要:
The present invention relates to a method of enabling authentication of an information carrier (105), the information carrier (105) comprising a writeable part (155) and a physical token (125) arranged to supply a response upon receiving a challenge, the method comprising the following steps; applying a first challenge (165) to the physical token (125) resulting in a first response (170), and detecting the first response (170) of the physical token (125) resulting in a detected first response data (175), the method being characterized in that it further comprises the following steps; forming a first authentication data (180) based on information derived from the detected first response data (175), signing the first authentication data (180), and writing the signed authentication data (185) in the writeable part (155) of the information carrier (105). The invention further relates to a method of authentication of an information carrier (105), as well as to devices for both enabling authentication as well as authentication of an information carrier (105).
摘要:
A transponder (1) comprises at least one memory (MEM1, MEM2) for storing encrypted information (E_k(EPC, PI)) that has been encrypted by use of a key (k) and for storing the key (k) associated with the encrypted information (E_k(EPC, PI)). The transponder (1) is adapted to send the key (k) slower response than the encrypted information (E_k(EPC, PI)) in response to queries of a reading device (2), which is preferably done by delaying the transmission of the key (k) or by limiting the response rate at which the key (k) is transmitted. In particular the invention is related to RFID systems.
摘要:
This invention relates to the use 100 of a challenge-response pair 104, 108 for calibrating a device 101 for authenticating 200 a physical token (102) 102.
摘要:
An optical identifier (1) can be used as a Physical Unclonable Function for producing a speckle pattern, as a response, upon being challenged with a light beam, as a challenge. This property can be used for identification of the optical identifier or of an object attached thereto, for the authentication of an information carrier or for generation of transaction keys. Since the response obtained in response to given challenge is highly sensitive to the relative position of the optical identifier, light beam source and detector for the speckle pattern, this relative position has to be accurately adjusted to reliably obtain the same response to a given challenge. To this aim, an optical identifier is proposed having an alignment area (3) for splitting an incident beam into distinct beams (6, 7) which can be detected as alignment signals (10a, 10b, 10c, 10d) on a detector (8) and used for the monitoring and for the adjustment of said relative position.
摘要:
The present invention relates to a method and a device (104) for authenticating a plurality of physical tokens (101, 102, 103). A basic idea of the invention is to supply a sequence of interconnected devices (108, 109, 110), each device comprising a physical token (101, 102, 103), with a challenge of the respective physical token created during enrollment of said respective physical token, wherein the sequence of interconnected devices is arranged such that a data set supplied to the sequence is cryptographically processed with a response of a token comprised in a device and passed on to a token comprised in a subsequent device which further cryptographically processes the processed data set with its response until a response of a final physical token has been used to further cryptographically process the data set. Then, the data set which has been cryptographically processed with the responses of the tokens in the sequence is received and used together with the data set itself and data associated with the response of the respective token to authenticate the sequence of physical tokens.
摘要:
In a device for providing challenge-response pairs a radiation detection element, a challenge-modifying element and preferably also a light source are arranged on the same side of an imaginary plane, which separates said radiation-detecting element from a radiation scattering element. Hence, generation of a speckle pattern having a desired minimum speckle size is facilitated and a more easily assembled device is provided.