摘要:
A measuring device includes a light source that emits light of a plurality of wavelengths, in particular a continuous spectrum, a first confocal diaphragm, through which light from the light source passes, and an optical illuminating/imaging system having a first splitting optical element designed as a prism or grating. The optical illuminating/imaging system, which is designed such that the light enters the first splitting optical element collimated, includes a first lens system having at least one first lens that is spatially separated from the first splitting optical element, the effective focal length of the first lens system being significantly different for different wavelengths, and the optical illuminating/imaging system being designed such that focus points of different wavelengths are formed at different locations along a line segment. The measuring device is configured to measure an object that intersects with the line segment and reflects at least a part of the light.
摘要:
A method for measuring the depth of the vapour cavity during an industrial machining process employs a high-energy beam. An optical measuring beam is directed towards the base of a vapour cavity. An optical coherence tomograph generates interference factors or other raw measurement data from reflections of the measurement beam. An evaluation device generates interference-suppressed measurement data, wherein raw measurement data that is generated at different times is processed together in the course of a mathematical operation. This operation can be a subtraction or a division. Slowly changing interference factors can thus be eliminated. An end value for the distance to the base of the vapour cavity is calculated from the interference-suppressed measurement data using a filter. As a result, the depth of the vapour cavity can be determined, in the knowledge of the distance at a part of the surface of the work piece that is not exposed to the high-energy beam.
摘要:
A measuring device includes a light source that emits light of a plurality of wavelengths, in particular a continuous spectrum, a first confocal diaphragm, through which light from the light source passes, and an optical illuminating/imaging system having a first splitting optical element designed as a prism or grating. The optical illuminating/imaging system, which is designed such that the light enters the first splitting optical element collimated, includes a first lens system having at least one first lens that is spatially separated from the first splitting optical element, the effective focal length of the first lens system being significantly different for different wavelengths, and the optical illuminating/imaging system being designed such that focus points of different wavelengths are formed at different locations along a line segment. The measuring device is configured to measure an object that intersects with the line segment and reflects at least a part of the light.
摘要:
A distance measuring device comprises a measuring head, the measuring head having an optical measuring system for carrying out an optical measurement process on a measurement object by means of at least one measuring light beam formed from a broad-band measuring light. The measuring head further has a liquid guide with a liquid inlet and a liquid outlet for producing a jet of liquid directed at the measurement object, the liquid guide being designed such that in certain sections at least the measuring light beam runs essentially along the jet of liquid. The measuring head further has a flow element with a laminar flow channel, the flow element being designed such that the at least one measuring light beam is able to reach the measurement object by passing through the laminar flow channel.
摘要:
A chromatic confocal measuring device includes a light source, which emits light of a plurality of wavelengths, and a first beam splitter, via which the light from the light source into an imaging optical unit having chromatic aberration on. Light reflected from the measurement object is imaged by the imaging optical unit and the first beam splitter onto a first confocal detection stop arrangement, such that the first confocal detection stop arrangement functions as a confocal aperture. Light incident through the first detection stop arrangement is detected and evaluated by a first detection device. The measuring device has a first slit stop, which functions as a confocal aperture of the measuring device. The measuring device additionally includes a second detection device and a second beam splitter, wherein the second beam splitter splits the light reflected from the measurement object into a first and a second partial beam, which image the same spatial region of the measurement object. The first detection device detects light of the first partial beam by a linear detector and evaluates total intensities over all wavelengths in order to create a total intensity profile and/or a total intensity image therefrom. The second detection device at the same time spectrally splits light of the second partial beam and evaluates intensities of the light of a plurality of individual wavelengths.
摘要:
An optical measuring device includes a measuring head with an imaging optical unit and an evaluation unit, wherein the measuring head is connected to the evaluation unit by way of two light-guiding fibers, wherein the evaluation unit includes a light source whose light is guided through the first light-guiding fiber into the measuring head and wherein light reflected by the measurement object is guided back through the measuring head and into a second light-guiding fiber by means of a beam splitter, in such a way that outgoing and returning light are separated, wherein the fiber ends are in mutually conjugate positions, wherein the beam splitter and the fiber ends are arranged together in a connector that is separably connected to the measuring head.
摘要:
A measuring device includes a light source that emits light of a plurality of wavelengths, in particular a continuous spectrum, a first confocal diaphragm, through which light from the light source passes, and an optical illuminating/imaging system having a first splitting optical element designed as a prism or grating. The optical illuminating/imaging system, which is designed such that the light enters the first splitting optical element collimated, includes a first lens system having at least one first lens that is spatially separated from the first splitting optical element, the effective focal length of the first lens system being significantly different for different wavelengths, and the optical illuminating/imaging system being designed such that focus points of different wavelengths are formed at different locations along a line segment. The measuring device is configured to measure an object that intersects with the line segment and reflects at least a part of the light.
摘要:
A chromatic, confocal measuring device uses a broadband, high-intensity light source implemented by optically pumping a luminophore. The illumination of the luminophore is selected so that the properties of the luminophore are exploited to maximize the optical output power of the light source.
摘要:
Apparatus for monitoring a thickness of a silicon wafer with a highly-doped layer at least at a backside of the silicon wafer is provided. The apparatus has a source configured to emit coherent light of multiple wavelengths. Moreover, the apparatus comprises a measuring head configured to be contactlessly positioned adjacent the silicon wafer and configured to illuminate at least a portion of the silicon wafer with the coherent light and to receive at least a portion of radiation reflected by the silicon wafer. Additionally, the apparatus comprises a spectrometer, a beam splitter and an evaluation device. The evaluation device is configured to determine a thickness of the silicon wafer by analyzing the radiation reflected by the silicon wafer by an optical coherence tomography process. The coherent light is emitted multiple wavelengths in a bandwidth b around a central wavelength wc.
摘要:
Apparatus for monitoring a thickness of a silicon wafer with a highly-doped layer at least at a backside of the silicon wafer is provided. The apparatus has a source configured to emit coherent light of multiple wavelengths. Moreover, the apparatus comprises a measuring head configured to be contactlessly positioned adjacent the silicon wafer and configured to illuminate at least a portion of the silicon wafer with the coherent light and to receive at least a portion of radiation reflected by the silicon wafer. Additionally, the apparatus comprises a spectrometer, a beam splitter and an evaluation device. The evaluation device is configured to determine a thickness of the silicon wafer by analyzing the radiation reflected by the silicon wafer by an optical coherence tomography process. The coherent light is emitted multiple wavelengths in a bandwidth b around a central wavelength wc.