Abstract:
A method of processing quantum dots is disclosed. The method comprises applying energy to excite the quantum dots to emit light and placing the quantum dots under vacuum after excitation of the quantum dots. Also disclosed is a method of processing a component including quantum dots comprising applying energy to the component including quantum dots to excite the quantum dots to emit light; and placing the component including quantum dots under vacuum after excitation. A method for processing a device is further disclosed, the method comprising applying energy to the device to excite the quantum dots to emit light; and placing the device under vacuum after excitation of the quantum dots. A method for preparing a device is also disclosed. Quantum dots, component, and devices of the methods are also disclosed.
Abstract:
A method of processing quantum dots is disclosed. The method comprises applying energy to excite the quantum dots to emit light and placing the quantum dots under vacuum after excitation of the quantum dots. Also disclosed is a method of processing a component including quantum dots comprising applying energy to the component including quantum dots to excite the quantum dots to emit light; and placing the component including quantum dots under vacuum after excitation. A method for processing a device is further disclosed, the method comprising applying energy to the device to excite the quantum dots to emit light; and placing the device under vacuum after excitation of the quantum dots. A method for preparing a device is also disclosed. Quantum dots, component, and devices of the methods are also disclosed.
Abstract:
A lighting device including an emissive material comprising quantum dots and a liquid medium disposed within a sealed container with at least a portion of a light guiding member disposed within the sealed container. Products including a lighting device in accordance with the invention are also disclosed.