Abstract:
Certain aspects of the present disclosure provide methods and apparatus for calibrating a transceiver for wireless communications. One example method generally includes configuring a first oscillating signal as an input signal to at least a portion of a receiver (RX) path, calibrating a residual sideband (RSB) of the receiver path using a second oscillating signal as a local oscillating signal for the receiver path, and calibrating an RSB of a transmitter (TX) path by routing an output of the transmitter path to the receiver path, after calibrating the RSB of the receiver path. Another example method generally includes routing an output of a transmitter path to a receiver path, using a first local oscillating signal for the transmitter path, using a second local oscillating signal for the receiver path, and measuring an output of the receiver path as a local oscillator (LO) leakage for the transmitter path.
Abstract:
Certain aspects of the present disclosure provide multi-way diversity receivers with multiple synthesizers. Such a multi-way diversity receiver may be implemented in a carrier aggregation (CA) transceiver. One example wireless reception diversity circuit generally includes three or more receive paths for processing received signals and two or more frequency synthesizing circuits configured to generate local oscillating signals to downconvert the received signals. Each of the frequency synthesizing circuits is shared by at most two of the receive paths, and each pair of the frequency synthesizing circuits may generate a pair of local oscillating signals having the same frequency.
Abstract:
Aspects of a wireless apparatus for configuring a plurality of VCOs are provided. The apparatus may be a UE. The UE receives a configuration for a plurality of carriers. Each carrier corresponds to a different LO frequency. In addition, the UE determines a VCO frequency for generating each LO frequency. Further, the UE assigns each determined VCO frequency to each of a plurality of VCO modules based on a distance between the VCO modules and each of the determined VCO frequencies. The plurality of VCO modules are of a set of VCO modules including at least three VCO modules.
Abstract:
A device includes a low-noise amplifier (LNA) and a matching circuit. The matching circuit is coupled to an output of the LNA and switchably coupled to at least one of a first and a second output of the device. The device may further include a power splitter switchably coupled between an output of the matching circuit and the first and/or the second output of the device.
Abstract:
Certain aspects of the present disclosure provide methods and apparatus for dynamically adjusting a voltage-controlled oscillator (VCO) frequency, a local oscillator (LO) divider ratio, and/or a receive path when adding or discontinuing reception of a component carrier (CC) in a carrier aggregation (CA) scheme. This dynamic adjustment is utilized to avoid (or at least reduce) VCO, LO, and transmit signal coupling issues with multiple component carriers, with minimal (or at least reduced) current consumption by the VCO and the LO divider.
Abstract:
Techniques are provided for configurable millimeter wave (mmWave) receiver architectures for carrier aggregation (CA). An example method for operating a wireless node in a carrier aggregation mode or a single band mode includes configuring the wireless node to operate in at least one of the carrier aggregation mode or the single band mode, configuring a high band receive chain wireless node to utilize a first intermediate frequency in response to configuring the wireless node to operate in the single band mode, and configuring the low band receive chain to utilize the first intermediate frequency, and the high band receive chain to utilize a second intermediate frequency in response to configuring the wireless node to operate in the carrier aggregation mode.
Abstract:
Wireless receivers are configured to support carrier aggregation. A device may include at least one low-noise amplifier (LNA). The device may also include a first input path configured to convey a first signal to a first input of the at least one LNA(s), and a second input path configured to convey a second signal to a second input of the LNA(s). Further, the device may include a transformer configured to inductively couple the first input path to the second input path.
Abstract:
Certain aspects of the present disclosure provide multi-way diversity receivers with multiple synthesizers. Such a multi-way diversity receiver may be implemented in a carrier aggregation (CA) transceiver. One example wireless reception diversity circuit generally includes three or more receive paths for processing received signals and two or more frequency synthesizing circuits configured to generate local oscillating signals to downconvert the received signals. Each of the frequency synthesizing circuits is shared by at most two of the receive paths, and each pair of the frequency synthesizing circuits may generate a pair of local oscillating signals having the same frequency.
Abstract:
Certain aspects of the present disclosure provide methods and apparatus for dynamically secondary cell (SCELL) allocation and frequency planning for carrier aggregation. One example system for radio frequency (RF) signal processing, generally includes a first integrated circuit (IC) comprising two or more receive chains, each receive chain for processing one of multiple component carriers in a carrier aggregation (CA) signal, wherein the first IC is configured to downconvert a signal associated with a primary cell of the CA signal; and a second IC configured to downconvert one or more signals associated with one or more secondary cells of the CA signal. The second IC may also be configured to upconvert a signal having a frequency different than the primary cell by an offset associated with the primary cell.
Abstract:
Methods and apparatus for transmitting wireless signals using multiple transmit chains that share hardware components to reduce transmitter circuit area. One example transmitter circuit for wireless communications generally includes a first transmit chain and a second transmit chain. The first transmit chain and the second transmit chain share a digital-to-analog converter (DAC). For certain aspects, the first transmit chain and the second transmit chain may also share a frequency synthesizer and/or a baseband processor.