Abstract:
Methods and apparatus for allocation of resources for handover related measurements in a communications system including user equipment (UE) devices, a macro base station and small base stations (e.g., femtocells) are described. Some embodiments are well suited for systems where the number of femtocells may equal or outnumber the number of UE devices. In some embodiments a macro base station allocates periodic communications resources for transmission of pilots by UEs or femtocells. The macro base station configures either femtocells or active UEs to transmit pilots using the allocated communications resources based on the relative number of femtocells to active UEs in the coverage area of the macro base station, devices which are lower in number transmitting the pilots. Transmitters (UE devices or femtocells) transmit pilots along with identification information using the allocated resource(s) and receivers measure the pilot signals. The pilot signal measurements may be used to make handover decisions.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided in connection with improving packet communication in a broadcast D2D communication system. In an example, a communications device is equipped to receive a first packet during a first timeslot from a broadcast transmitter, measure a power level of a NACK received during the first timeslot, receive the first packet during a second timeslot, and determine whether to transmit the first packet during the second timeslot based on the measured power level of the NACK. In such an aspect in which the communications device determines that the measured power level of the NACK is above a threshold power level, the communications device may act as a relay and transmit the first packet during the second timeslot.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided in connection with improving packet communication in a broadcast D2D communication system. In an example, a communications device is equipped to receive a first packet during a first timeslot from a broadcast transmitter, measure a power level of a NACK received during the first timeslot, receive the first packet during a second timeslot, and determine whether to transmit the first packet during the second timeslot based on the measured power level of the NACK. In such an aspect in which the communications device determines that the measured power level of the NACK is above a threshold power level, the communications device may act as a relay and transmit the first packet during the second timeslot.
Abstract:
Systems and methodologies are described that facilitate identifying peers based upon encoded signals during peer discovery in a peer to peer network. For example, direct signaling that partitions a time-frequency resource into a number of segments can be utilized to communicate an identifier within a peer discovery interval; thus, a particular segment selected for transmission can signal a portion of the identifier, while a remainder can be signaled based upon tones communicated within the selected segment. Moreover, a subset of symbols within the resource can be reserved (e.g., unused) to enable identifying and/or correcting timing offset. Further, signaling can be effectuated over a plurality of peer discovery intervals such that partial identifiers communicated during each of the peer discovery intervals can be linked (e.g., based upon overlapping bits and/or bloom filter information).
Abstract:
Systems and methodologies are described that facilitate identifying peers based upon encoded signals during peer discovery in a peer to peer network. For example, direct signaling that partitions a time-frequency resource into a number of segments can be utilized to communicate an identifier within a peer discovery interval; thus, a particular segment selected for transmission can signal a portion of the identifier, while a remainder can be signaled based upon tones communicated within the selected segment. Moreover, a subset of symbols within the resource can be reserved (e.g., unused) to enable identifying and/or correcting timing offset. Further, signaling can be effectuated over a plurality of peer discovery intervals such that partial identifiers communicated during each of the peer discovery intervals can be linked (e.g., based upon overlapping bits and/or bloom filter information).
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided in connection with D2D relay link selection in a LTE based access network. In one example, a communications device is equipped to determine that the communications device (e.g., a UE) is able to establish a relay link with a candidate UE based on at least one of information associated with any preexisting access links with the candidate UE, information associated with any preexisting accessing links within a threshold vicinity of the UE or the candidate UE, or any other UE UL interference, determine that the candidate UE is able to support the relay link based on information associated with preexisting access links for the candidate UE, and perform a link establishment process for the relay link with the candidate UE based on the determinations.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided in connection with D2D relay link selection in a LTE based access network. In one example, a communications device is equipped to determine that the communications device (e.g., a UE) is able to establish a relay link with a candidate UE based on at least one of information associated with any preexisting access links with the candidate UE, information associated with any preexisting accessing links within a threshold vicinity of the UE or the candidate UE, or any other UE UL interference, determine that the candidate UE is able to support the relay link based on information associated with preexisting access links for the candidate UE, and perform a link establishment process for the relay link with the candidate UE based on the determinations.
Abstract:
Systems and methodologies are described that facilitate identifying peers based upon encoded signals during peer discovery in a peer to peer network. For example, direct signaling that partitions a time-frequency resource into a number of segments can be utilized to communicate an identifier within a peer discovery interval; thus, a particular segment selected for transmission can signal a portion of the identifier, while a remainder can be signaled based upon tones communicated within the selected segment. Moreover, a subset of symbols within the resource can be reserved (e.g., unused) to enable identifying and/or correcting timing offset. Further, signaling can be effectuated over a plurality of peer discovery intervals such that partial identifiers communicated during each of the peer discovery intervals can be linked (e.g., based upon overlapping bits and/or bloom filter information).
Abstract:
Systems and methodologies are described that facilitate identifying peers based upon encoded signals during peer discovery in a peer to peer network. For example, direct signaling that partitions a time-frequency resource into a number of segments can be utilized to communicate an identifier within a peer discovery interval; thus, a particular segment selected for transmission can signal a portion of the identifier, while a remainder can be signaled based upon tones communicated within the selected segment. Moreover, a subset of symbols within the resource can be reserved (e.g., unused) to enable identifying and/or correcting timing offset. Further, signaling can be effectuated over a plurality of peer discovery intervals such that partial identifiers communicated during each of the peer discovery intervals can be linked (e.g., based upon overlapping bits and/or bloom filter information).