Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided in connection with providing private expression protection in a wireless communications network. In one example, a UE is equipped to internally receive a request (e.g., from an application running on the UE) to announce a private expression and/or at least a reference to an expression-code associated with the private expression, and determine whether the reference to the expression-code and/or the expression-code matches a stored instance of the expression-code. In an aspect, the UE may be equipped to announce the at least one of the private expression or the expression-code when stored instance of the expression-code corresponds to the expression-code received with the request. In another aspect, the UE may be equipped to prohibit announcement of any information associated with the private expression when stored expression-code does not correspond to the expression-code received with the request.
Abstract:
Methods, systems, and devices are described for peer-to-peer or device-to-device location services. Mobile devices with a known location (referred to as landmarks) may broadcast their location information and/or a reference signal for other mobile devices (referred to as targets). Landmarks may determine their location through GPS or other location determining means. Targets may have limited or no connection to location determining services, and they may use broadcast information from landmarks, without a request, to determine the targets' location. The targets may determine absolute and/or relative locations. Once a target device determines its location it may assume a role of a landmark to provide broadcast location information to other devices.
Abstract:
Power efficient methods and apparatus for detecting wireless terminals in a relatively small geographic area are described. Wireless terminals transmit discovery signals and/or other signals which may be detected by an access point. Various described methods and apparatus are well suited for embodiments where multiple access points, which obtain power from a common power source and/or via a common power bus, with limited power delivery capability. To address power constraints, access points are controlled by a gateway device coupled to the access points so that one or more access points perform monitoring at different times with one or more access points having their receivers powered off while another access point monitors for wireless terminal signals. Power consumption from the common power source is managed by controlling power consumption associated with monitoring operations performed by one or more access points coupled to a common power source.
Abstract:
Methods, systems, and devices are described for managing a multimedia broadcast multicast service (MBMS). In one configuration, service announcement information for at least one MBMS may be received. At least a subset of the service announcement information may be broadcast in a peer discovery signal. Content of the at least one MBMS may then be relayed to at least one mobile device operating outside a coverage area of a base station. In another configuration, an out-of-coverage status indicator or MBMS query may be broadcast in a first peer discovery signal, and a second peer discovery signal may be received from at least one MBMS relay device. The second peer discovery signal may include at least a subset of service announcement information for at least one MBMS.
Abstract:
Methods and apparatus for allocation of resources for handover related measurements in a communications system including user equipment (UE) devices, a macro base station and small base stations (e.g., femtocells) are described. Some embodiments are well suited for systems where the number of femtocells may equal or outnumber the number of UE devices. In some embodiments a macro base station allocates periodic communications resources for transmission of pilots by UEs or femtocells. The macro base station configures either femtocells or active UEs to transmit pilots using the allocated communications resources based on the relative number of femtocells to active UEs in the coverage area of the macro base station, devices which are lower in number transmitting the pilots. Transmitters (UE devices or femtocells) transmit pilots along with identification information using the allocated resource(s) and receivers measure the pilot signals. The pilot signal measurements may be used to make handover decisions.
Abstract:
Methods, systems, and devices are described for peer-to-peer or device-to-device location services. Mobile devices with a known location (referred to as landmarks) may broadcast their location information and/or a reference signal for other mobile devices (referred to as targets). Landmarks may determine their location through GPS or other location determining means. Targets may have limited or no connection to location determining services, and they may use broadcast information from landmarks, without a request, to determine the targets' location. The targets may determine absolute and/or relative locations. Once a target device determines its location it may assume a role of a landmark to provide broadcast location information to other devices.
Abstract:
Methods, systems, and devices are described for improving communications of a machine type communications (MTC) device. In a method of communication, a signal to interference noise ratio (SINR) of one or more resource blocks (RBs) of a target device may be estimated by, for example, an MTC device. The MTC device may then select one or more of the RBs of the target device to be in a resource pool based at least in part on the estimated SINR. In some embodiments, the MTC device may compare the estimated SINR of the one or more RBs of the target device to a threshold SINR and select one or more RBs with an SINR less than the threshold SINR to be in the resource pool. In some embodiments, the MTC device may randomly select a resource block from the resource pool and transmit on the selected resource block.
Abstract:
Methods, systems, and devices are described for managing wireless communications. In one method, a mobile device may determine to transition to a relay status. The relay status may indicate a capability of the mobile device to function as a relay device between at least one other mobile device and a base station. A peer discovery signal that indicates the relay status may then be transmitted. In another method, a mobile device may broadcast an out-of-coverage status indicator in a first peer discovery signal. A second peer discovery signal may be received from at least one other mobile device. The second peer discovery signal may indicate a capability of the at least one other mobile device to function as a relay device.
Abstract:
Power efficient methods and apparatus for detecting wireless terminals in a relatively small geographic area are described. Wireless terminals transmit discovery signals and/or other signals which may be detected by an access point. Various described methods and apparatus are well suited for embodiments where multiple access points, which obtain power from a common power source and/or via a common power bus, with limited power delivery capability. To address power constraints, access points are controlled by a gateway device coupled to the access points so that one or more access points perform monitoring at different times with one or more access points having their receivers powered off while another access point monitors for wireless terminal signals. Power consumption from the common power source is managed by controlling power consumption associated with monitoring operations performed by one or more access points coupled to a common power source.
Abstract:
Improved group communications methods which are well suited for a wireless environment are described. End nodes request that access nodes make changes in group membership information maintained at the access node. The access node responds to the requests by a response signal indicating a grant or denial of the request. Requests may be to add or remove the end node, e.g., a mobile wireless terminal, from a particular group membership list identified in the request signal. The access node maintains a detailed list of group members and uses the information to control how signals, e.g., packets, are transmitted to the group members. Group membership information may be updated at the access node at the time of handoff and/or an end node enters the cell or otherwise changes its point of network attachment.