Abstract:
Certain aspects relate to systems and techniques for generating high resolution iris templates and for detecting spoofs, enabling more reliable and secure iris authentication. Pairs of RGB and NIR images can be captured by the iris authentication system for use in iris authentication, for example using an NIR LED flash and a four-channel image sensor. Multiple images of the user's iris can be captured by the system in a relatively short period of time and can be fused together to generate a high resolution iris image that can contain more detail of the iris structure and unique pattern than each individual images. The “liveness” of the iris, referring to whether the iris is a real human iris or an iris imitation, can be assessed via a liveness ratio based on comparison of known iris and sclera reflectance properties at various wavelengths to determined sensor responses at those same wavelengths.
Abstract:
Systems and methods for detecting and attenuating shadows in a visible light image are disclosed. In various embodiments, shadows on human skin may be detected and attenuated using multi-spectral imaging techniques. Multispectral image data that includes a living subject can be processed to detect live-subject portions of the multispectral image data. Shadows in the detected live-subject portions of the multispectral image data can be identified. The identified shadows in at least part of the multispectral image data can be attenuated.
Abstract:
Systems and methods for multispectral imaging are disclosed. The multispectral imaging system can include a near infrared (NIR) imaging sensor and a visible imaging sensor. The disclosed systems and methods can be implemented to improve alignment between the NIR and visible images. Once the NIR and visible images are aligned, various types of multispectral processing techniques can be performed on the aligned images.
Abstract:
Sensing of scene-based occurrences is disclosed. In one example, a vision sensor system comprises (1) dedicated computer vision (CV) computation hardware configured to receive sensor data from at least one sensor array and capable of computing CV features using readings from multiple neighboring sensor pixels and (2) a first processing unit communicatively coupled with the dedicated CV computation hardware. The vision sensor system is configured to, in response to processing of the one or more computed CV features indicating a presence of one or more irises in a scene captured by the at least one sensor array, generate data in support of iris-related operations to be performed by a second processing unit and send the generated data to the second processing unit.
Abstract:
Sector-based iris authentication is disclosed. One example involves (a) capturing an image of an eye of the user, the image including an iris region, (b) identifying a plurality of sectors of the iris region within the image, (c) determining a measure of distinctiveness for each sector of the iris region, (d) selecting one or more sectors from the plurality of sectors of the iris region based on the determined measure of distinctiveness for the each sector of the iris region, the selected one or more sectors being fewer in number than the plurality of sectors of the iris region, and (e) comparing the selected one or more sectors to one or more registered iris data records.
Abstract:
Systems and methods for multispectral imaging are disclosed. The multispectral imaging system can include a near infrared (NIR) imaging sensor and a visible imaging sensor. The disclosed systems and methods can be implemented to improve alignment between the NIR and visible images. Once the NIR and visible images are aligned, various types of multispectral processing techniques can be performed on the aligned images.
Abstract:
Certain aspects relate to systems and techniques for generating high resolution iris templates and for detecting spoofs, enabling more reliable and secure iris authentication. Pairs of RGB and NIR images can be captured by the iris authentication system for use in iris authentication, for example using an NIR LED flash and a four-channel image sensor. Multiple images of the user's iris can be captured by the system in a relatively short period of time and can be fused together to generate a high resolution iris image that can contain more detail of the iris structure and unique pattern than each individual images. The “liveness” of the iris, referring to whether the iris is a real human iris or an iris imitation, can be assessed via a liveness ratio based on comparison of known iris and sclera reflectance properties at various wavelengths to determined sensor responses at those same wavelengths.
Abstract:
Use of pupillary response to visible light for iris authentication is disclosed. One example involves (a) capturing an initial image of an eye including an inner circular boundary between a pupil region and an iris region and an outer circular boundary between the iris region and a sclera region, (b) determining a first size measurement indicative of the inner circular boundary, (c) responsive to at least the first size measurement, modulating one or more visible light sources to output visible light toward the eye of the user, (d) capturing a subsequent image of the eye of the user during a period of pupillary response, (e) obtaining an iris data record of the user, and (f) comparing the iris data record of the user to one or more registered iris data records to authenticate the user.
Abstract:
Certain aspects relate to systems and techniques for generating high resolution iris templates and for detecting spoofs, enabling more reliable and secure iris authentication. Pairs of RGB and NIR images can be captured by the iris authentication system for use in iris authentication, for example using an NIR LED flash and a four-channel image sensor. Multiple images of the user's iris can be captured by the system in a relatively short period of time and can be fused together to generate a high resolution iris image that can contain more detail of the iris structure and unique pattern than each individual images. The “liveness” of the iris, referring to whether the iris is a real human iris or an iris imitation, can be assessed via a liveness ratio based on comparison of known iris and sclera reflectance properties at various wavelengths to determined sensor responses at those same wavelengths.
Abstract:
Systems and methods for multispectral imaging are disclosed. The multispectral imaging system can include a near infrared (NIR) imaging sensor and a visible imaging sensor. The disclosed systems and methods can be implemented to de-noise a visible light image using a gradient scale map generated from gradient vectors in the visible light image and a NIR image. The gradient scale map may be used to determine the amount of de-noising guidance applied from the NIR image to the visible light image on a pixel-by-pixel basis.