Abstract:
Wireless communication systems and methods are described in which a network device may establish a connection with a user device within a wireless network. Through this connection location information regarding the user device is received. Based on the received location information, a second network device may be configured to beamform a high-frequency communication transmission session with the user device.
Abstract:
Methods, systems, and devices are described for directional synchronization signal signals in a millimeter wave communication system. A user equipment (UE) may receive a narrowband signal component of a synchronization signal for the millimeter wave communications. The narrowband signal component may include correlation information. The UE may use the correlation information to identify a wideband signal component of the synchronization signal for the millimeter wave communications. The UE may search frequencies associated with a first frequency location determined from the correlation information to identify and detect the wideband signal component of the synchronization signal.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus receives a discovery signal transmitted from a connection point (CP) via a directional beam. The discovery signal may include first information (including beam sweep configuration information) related to the CP. The apparatus then transmits an association signal to the CP based on the beam sweep configuration information and monitors for a resource grant from the CP based on the transmitted association signal. Alternatively, the apparatus transmits a discovery signal via a directional beam to a user equipment (UE). The discovery signal may include first information (including beam sweep configuration information) related to the apparatus. The apparatus then receives an association signal from the UE based on the beam sweep configuration information and determines a resource grant for communicating with the UE based on the received association signal.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus listens for directional signal beams according to a first pattern, detects a plurality of discovery signals respectively from a plurality of connection points (CPs), wherein each CP transmits a discovery signal by transmitting a directional beam according to a respective pattern, determines information related to each CP based on the discovery signal detected from a respective CP, determines a timeslot for transmitting an association signal to each CP, wherein a respective timeslot is determined based on the information determined for the respective CP or a timeslot in which the respective discovery signal is transmitted by the respective CP according to the respective pattern, and transmits an association signal to each CP in the respective timeslot according to a determined beamforming direction of the UE and a determined beamforming direction of the respective CP.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus receives a discovery signal transmitted from a connection point (CP) via a directional beam. The discovery signal may include first information (including beam sweep configuration information) related to the CP. The apparatus then transmits an association signal to the CP based on the beam sweep configuration information and monitors for a resource grant from the CP based on the transmitted association signal. Alternatively, the apparatus transmits a discovery signal via a directional beam to a user equipment (UE). The discovery signal may include first information (including beam sweep configuration information) related to the apparatus. The apparatus then receives an association signal from the UE based on the beam sweep configuration information and determines a resource grant for communicating with the UE based on the received association signal.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus receives a discovery signal transmitted from a connection point (CP) via a directional beam. The discovery signal may include first information (including beam sweep configuration information) related to the CP. The apparatus then transmits an association signal to the CP based on the beam sweep configuration information and monitors for a resource grant from the CP based on the transmitted association signal. Alternatively, the apparatus transmits a discovery signal via a directional beam to a user equipment (UE). The discovery signal may include first information (including beam sweep configuration information) related to the apparatus. The apparatus then receives an association signal from the UE based on the beam sweep configuration information and determines a resource grant for communicating with the UE based on the received association signal.
Abstract:
Methods, systems, and devices are described for directional synchronization signal signals in a millimeter wave communication system. A user equipment (UE) may receive a narrowband signal component of a synchronization signal for the millimeter wave communications. The narrowband signal component may include correlation information. The UE may use the correlation information to identify a wideband signal component of the synchronization signal for the millimeter wave communications. The UE may search frequencies associated with a first frequency location determined from the correlation information to identify and detect the wideband signal component of the synchronization signal.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus receives a discovery signal transmitted from a connection point (CP) via a directional beam. The discovery signal may include first information (including beam sweep configuration information) related to the CP. The apparatus then transmits an association signal to the CP based on the beam sweep configuration information and monitors for a resource grant from the CP based on the transmitted association signal. Alternatively, the apparatus transmits a discovery signal via a directional beam to a user equipment (UE). The discovery signal may include first information (including beam sweep configuration information) related to the apparatus. The apparatus then receives an association signal from the UE based on the beam sweep configuration information and determines a resource grant for communicating with the UE based on the received association signal.
Abstract:
Methods, systems, and devices are described for dynamic directional synchronization signal signals in a millimeter wave communication system. A base station may determine a narrowband signal component and a wideband signal component of a synchronization signal for millimeter wave communications. The base station may identify network characteristic(s) of the millimeter wave communication network and adjust parameter(s) of the narrowband signal and/or the wideband signal components of the synchronization signal. The parameters may include a transmission power split or ratio, a bandwidth, a tone selection, or any combination of these parameters.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus receives a discovery signal transmitted from a connection point (CP) via a directional beam. The discovery signal may include first information (including beam sweep configuration information) related to the CP. The apparatus then transmits an association signal to the CP based on the beam sweep configuration information and monitors for a resource grant from the CP based on the transmitted association signal. Alternatively, the apparatus transmits a discovery signal via a directional beam to a user equipment (UE). The discovery signal may include first information (including beam sweep configuration information) related to the apparatus. The apparatus then receives an association signal from the UE based on the beam sweep configuration information and determines a resource grant for communicating with the UE based on the received association signal.