Abstract:
In some embodiments, a method includes receiving, at a first device via a channel of a communication medium, multiple data transmissions, wherein a code rate of multiple code rates is associated with each data transmission of the multiple data transmissions. The method includes determining, based on signal characteristics of the multiple data transmissions, the data transmission from among the multiple data transmissions having a preferred physical data rate. The method also includes setting a code rate for the channel for communication from a second device to the first device via the communication medium, to the code rate of the data transmission having the preferred physical data rate.
Abstract:
Line cycle adaptation periods having variable duration are disclosed. A powerline cycle may be segmented into a plurality of line cycle adaptation periods having variable duration based upon signal-to-noise (SNR) characteristics measured at various times throughout the powerline cycle. The line cycle adaptation periods may include at least two periods with unequal durations. Each line cycle adaptation period may be associated with one or more tone maps defining physical layer transmission properties to be used by a second device for transmissions occurring during the line cycle adaptation period.
Abstract:
An advanced gateway for multiple broadband access can include a plurality of broadband network interfaces. The advanced gateway can route data from a local network interface to a broadband network interface when a performance attribute of the broadband network meets or exceeds a data characteristic of data conveyed through the local network interface. In another embodiment, a first advanced gateway can send a portion of data received through the local network interface to a second advanced gateway when performance attributes associated with the first advanced gateway cannot meet or exceed a data characteristic of data received through a local network interface of the first advanced gateway. In yet another embodiment, an advanced gateway can receive commands from service providers, determine a recipient device for the command and forward the command to the recipient device through a device interface coupled to the recipient device.
Abstract:
A method for transmitting data from within a wired communication system is disclosed. A first network-enabled device can select one of a plurality of communication mediums for transmitting the data stream to the second device and transmit the data stream to the second device using the selected communication medium. The first device determines that the transmission of the data stream using the selected communication medium is being interfered with by transmission of other data from the first device to a third device on another of the plurality of communication mediums. In response to determining that the transmission of the data stream to the second device on the selected communication medium is being interfered with by the transmission of the other data to the third device using the other communication medium, the first device turns off the transmission of the other data to the third device on the other communication medium.
Abstract:
A method includes receiving, at a first connectivity device, a first wake-up signal from an electronic device associated with a first class of devices. The first connectivity device is coupled to provide communications between the electronic device and a gateway device that provides access to an external network. The method includes determining a length of time that the first connectivity device is to remain in an active power mode based on a usage pattern defined for the first class of devices. The method includes updating the first connectivity device to be in the active power mode for at least the length of time.
Abstract:
A method for transmitting data from within a wired communication system is disclosed. A first network-enabled device can select one of a plurality of communication mediums for transmitting the data stream to the second device and transmit the data stream to the second device using the selected communication medium. The first device determines that the transmission of the data stream using the selected communication medium is being interfered with by transmission of other data from the first device to a third device on another of the plurality of communication mediums. In response to determining that the transmission of the data stream to the second device on the selected communication medium is being interfered with by the transmission of the other data to the third device using the other communication medium, the first device turns off the transmission of the other data to the third device on the other communication medium.
Abstract:
Protocol data units (PDUs) associated with a packet stream are transmitted with sequence numbers to support reordering and selective acknowledgement. A selective acknowledgement (SACK) message may be used to indicate at least one sequence number of a lost or corrupted PDU which was not properly received by the receiving device. Responsive to the SACK message, the lost or corrupted PDU is retransmitted via a different path of the network, different from the path used to transmit the original PDU. Lost or corrupted PDUs may not be retransmitted if the estimated retransmission delay is greater than a delay tolerance associated with the quality of service requirements of the application. Instead, a control message (i.e. “cut losses” message) may be transmitted to indicate that PDUs earlier than a particular sequence number will not be transmitted.
Abstract:
A device may determine adapted physical layer transmission properties based upon characteristics of a packet stream to be transmitted via a communications channel. The physical layer transmission properties may comprise an adapted tone map that is associated with an aggressive physical layer throughput capability for UDP traffic, a conservative physical layer throughput capability for TCP traffic, or a dynamically adjusted physical layer throughput rate for mixed traffic. An indication regarding the adapted tone map may be included in a first message, a portion of a physical layer framing protocol, a physical layer control transmission (such as a frame control symbol), or other transmissions such that the receiving device can derive the adapted tone map without significant added overhead.
Abstract:
In some embodiments, a method includes receiving, at a first device via a channel of a communication medium, multiple data transmissions, wherein a code rate of multiple code rates is associated with each data transmission of the multiple data transmissions. The method includes determining, based on signal characteristics of the multiple data transmissions, the data transmission from among the multiple data transmissions having a preferred physical data rate. The method also includes setting a code rate for the channel for communication from a second device to the first device via the communication medium, to the code rate of the data transmission having the preferred physical data rate.
Abstract:
An advanced gateway for multiple broadband access can include a plurality of broadband network interfaces. The advanced gateway can route data from a local network interface to a broadband network interface when a performance attribute of the broadband network meets or exceeds a data characteristic of data conveyed through the local network interface. In another embodiment, a first advanced gateway can send a portion of data received through the local network interface to a second advanced gateway when performance attributes associated with the first advanced gateway cannot meet or exceed a data characteristic of data received through a local network interface of the first advanced gateway. In yet another embodiment, an advanced gateway can receive commands from service providers, determine a recipient device for the command and forward the command to the recipient device through a device interface coupled to the recipient device.