Abstract:
A device includes a receiver, a memory, and a processor. The receiver is configured to receive a remote voice profile. The memory is electrically coupled to the receiver. The memory is configured to store a local voice profile associated with a person. The processor is electrically coupled to the memory and the receiver. The processor is configured to determine that the remote voice profile is associated with the person based on speech content associated with the remote voice profile or an identifier associated with the remote voice profile. The processor is also configured to select the local voice profile for profile management based on the determination.
Abstract:
A monoscopic low-power mobile device is capable of creating real-time images and videos for multiple viewpoints from a single captured view. The device uses statistics from an autofocusing process to create a block depth map of a single capture view. Artifacts in the block depth map are reduced and an image depth map is created. Alternate views are created from the image depth map using a Z-buffer based surface recover process and a disparity map which is a function of a geometric vision model.
Abstract:
A device includes a receiver, a memory, and a processor. The receiver is configured to receive a remote voice profile. The memory is electrically coupled to the receiver. The memory is configured to store a local voice profile associated with a person. The processor is electrically coupled to the memory and the receiver. The processor is configured to determine that the remote voice profile is associated with the person based on speech content associated with the remote voice profile or an identifier associated with the remote voice profile. The processor is also configured to select the local voice profile for profile management based on the determination.
Abstract:
A monoscopic low-power mobile device is capable of creating real-time images and videos for multiple viewpoints from a single captured view. The device uses statistics from an autofocusing process to create a block depth map of a single capture view. Artifacts in the block depth map are reduced and an image depth map is created. Alternate views are created from the image depth map using a Z-buffer based surface recover process and a disparity map which is a function of a geometric vision model.
Abstract:
A device includes a receiver, a memory, and a processor. The receiver is configured to receive a remote voice profile. The memory is electrically coupled to the receiver. The memory is configured to store a local voice profile associated with a person. The processor is electrically coupled to the memory and the receiver. The processor is configured to determine that the remote voice profile is associated with the person based on speech content associated with the remote voice profile or an identifier associated with the remote voice profile. The processor is also configured to select the local voice profile for profile management based on the determination.
Abstract:
Error concealment is used to hide the effects of errors detected within digital video information. A novel spatial error concealment technique is disclosed for use when the error concealment mode decision determines that spatial error concealment should be used for reconstruction. The novel spatial error concealment technique divides a corrupt macroblock into multiple regions, such as, a corner region, a row adjacent to the corner region, a column adjacent to the corner region, and a remainder main region. Those regions are then reconstructed and information from earlier reconstructed regions may be used in later reconstructed regions. Finally, a macroblock refreshment technique is disclosed for preventing error propagation from harming non-corrupt inter-blocks. Specifically, an inter-macroblock may be ‘refreshed’ using spatial error concealment if there has been significant error caused damage that may cause the inter-block to propagate the errors.
Abstract:
A device includes a receiver, a memory, and a processor. The receiver is configured to receive a remote voice profile. The memory is electrically coupled to the receiver. The memory is configured to store a local voice profile associated with a person. The processor is electrically coupled to the memory and the receiver. The processor is configured to determine that the remote voice profile is associated with the person based on speech content associated with the remote voice profile or an identifier associated with the remote voice profile. The processor is also configured to select the local voice profile for profile management based on the determination.