Abstract:
Methods and apparatus for route selection to a destination may include receiving a starting point and one or more destinations, and transmitting a request to a server for routes associated with the starting point and the one or more destinations. Additionally, the methods and apparatus may include receiving, from the server, a plurality of routes to the one or more destinations. Furthermore, the methods and apparatus may include selecting a route from the plurality of routes based at least on one or more reliability parameters associated with each route of the plurality of routes, the one or more reliability parameters comprising a likelihood of determining a position location along each route, the likelihood being based at least on detectability of features in each route by one or more object detection modalities.
Abstract:
A wireless communication device includes: a memory; a transceiver; and a processor communicatively coupled to the memory and to the transceiver and configured to: obtain a first device identity for each of a plurality of first radio-frequency (RF) devices each configured to transmit a wireless RF signal; obtain a mobility status for each of the plurality of first RF devices, the mobility status indicative of whether the respective first RF device is expected to be mobile or static; obtain an RF signal measurement for each of the plurality of first RF devices; and produce a profile of the plurality of first RF devices using the first device identity for each of the plurality of first RF devices, the mobility status for each of the plurality of first RF devices, and the RF signal measurement for each of the plurality of first RF devices.
Abstract:
Various techniques are provided that may be implemented at one or more of a plurality of co-located mobile devices. For example, a first mobile device may identify a plurality of location determination tasks, transmit a request indicative of a subset of the plurality of location determination tasks to be performed by a second mobile device, and receive a response to the request.
Abstract:
A method includes: receiving, at a mobile device configured for communication using a communication protocol associated with a dedicated frequency band, a first inbound signal from a first node, the first inbound signal having a format in accordance with the communication protocol and having a first frequency that is outside the dedicated frequency band; receiving a second inbound signal, from a second node, having a same format in accordance with the communication protocol as the first inbound signal and having a second frequency in the dedicated frequency band; determining location information for the first node using the first inbound signal; and sending an outbound signal to a location server, the outbound signal including the location information for the first node and a node identifier of the second node, the outbound signal being formatted according to the communication protocol and having a frequency in the dedicated frequency band.
Abstract:
Techniques for controlling sampling rates in non-causal positioning applications are provided. An example method for controlling a sampling rate in a mobile device includes determining one or more positions based on external signal information, such that the one or more positions are determined at a position fix rate, storing sensor information associated with one or more sensors at a sensor sampling rate, calculating a position estimate based on a non-causal analysis of the one or more positions and the sensor information, such that the non-causal analysis utilizes past, present and future positions and the corresponding past, present and future sensor information, comparing the position estimate to a Quality of Service (QoS) value, and modifying the position fix rate based on the comparison of the position estimate to the QoS value.
Abstract:
Method, mobile device, computer program product, and apparatus relating to designating and implementing a geofence containing an AP measurement data configuration. The AP measurement data configuration may be used to specify how a mobile device should to perform while within the geofence. The AP measurement data configuration may include instructions to control collection such as: “disable,” “passive,” and “batch.”
Abstract:
A method of wireless communication includes: generating a communication that includes attribute indications corresponding to a plurality of attributes of a transmitting device; and transmitting the communication wirelessly from the transmitting device; where the attribute indications include: a device identity of the transmitting device; a mobility indication indicative of whether the transmitting device is mobile or static; a location indication indicative of a location of the transmitting device; and a privacy indication associated with a corresponding attribute of the transmitting device, the privacy indication indicating whether a receiving device that receives the attribute indications from the transmitting device is authorized to transmit information regarding the corresponding attribute of the transmitting device.
Abstract:
A method of registering a target device includes: receiving a registration request, through a user interface, to register the target device; determining a suggested registration location for the target device; and providing an indication of the suggested registration location through the user interface.
Abstract:
A method of performing functions by proxy for a set of associated proximate devices is disclosed. In some embodiments, the method may comprise associating a set of user equipments (UEs), wherein upon determination that a first UE in the set is unavailable for performing a requested function, at least one alternate second UE in the associated set of UEs is selected, wherein the at least one second UE is proximate to the first UE and the at least one second UE is available for performing the requested function. The performance of the requested function on the at least one second UE is initiated.
Abstract:
A method for requesting assistance data includes, at a mobile device, determining an expected quality of service information, transmitting a request for assistance data, transmitting the expected quality of service information, and receiving an assistance data file comprising heat map information, wherein the heat map information includes a heat map grid resolution and a suitable quantization precision level for heat map values as determined, at least in part, based on the expected quality of service information.