Abstract:
This disclosure provides systems, methods and apparatus, including computer programs encoded on computer storage media, for making and controlling single-mirror interferometric modulators (IMODs), which may be multi-state IMODs or analog IMODs. In one aspect, a movable reflector stack or an absorber stack of an IMOD may include at least one protrusion that is configured to cause the movable reflector stack to be tilted relative to the absorber layer when the movable reflector stack is moved close to the absorber stack. The protrusion may be configured to cause color averaging when the IMOD is in a white state. The absorber stack may include an absorber layer having a lower extinction coefficient value at a red wavelength and a higher extinction coefficient value at a blue wavelength.
Abstract:
This disclosure provides systems, methods, and apparatus for an analog or multistate electromechanical systems display devices including movable absorber together with a movable reflective layers. In one aspect, an electromechanical systems display device may include a movable reflector assembly and a movable absorber assembly. The absorber assembly may be disposed between the reflector assembly and a substrate. The absorber assembly may be configured to move to an absorber white state position proximate the reflector assembly and defining a first gap when the reflector assembly is in a reflector white/black position. The absorber assembly may be configured to move to a closed position closer to the substrate, defining a second gap, when the reflector assembly is in the reflector white/black position. The reflector assembly may be configured to move from the reflector white/black position to increase a height of the second gap when the absorber assembly is in the closed position.
Abstract:
This disclosure provides systems, methods, and apparatus related to electromechanical systems display devices. In one aspect, an apparatus includes a display assembly, a sensor, and a processor. The display assembly may include an array of electromechanical systems display devices. The sensor may be configured to provide a signal indicative of an illumination angle, a viewing angle, or both, with respect to a line perpendicular to the display assembly. The processor may be configured to receive the signal from the sensor, to determine the illumination angle and/or viewing angle, and to process image data to compensate for the determined illumination angle and/or viewing angle. In one implementation, the image data is processed to compensate for a shift in a wavelength of light reflected from at least one of the electromechanical systems display devices that would have occurred as a result of a non-normal illumination and/or viewing angle.
Abstract:
An optical touch sensor may include traces of photoconductive material formed on a substantially transparent substrate. Each photoconductive trace may be capable of responding to an incident light intensity increase on a portion of the photoconductive trace by increasing the number of charged carriers, thereby raising the electrical conductivity of that portion of the photoconductive trace. An incident light intensity decrease on a portion of the photoconductive trace will lower the electrical conductivity of that portion of the photoconductive trace. The corresponding changes in voltage may be measured by circuits that include conductive traces formed substantially perpendicular to, and configured for electrical connection with, the traces of photoconductive material. A diode (such as a Schottky diode) may be formed at the electrical connections between the conductive traces and the photoconductive traces.
Abstract:
This disclosure provides systems, methods and apparatus for diffusing light in a display device, such as a reflective display device. In one aspect, the display can include an array of display elements and an optical diffuser forward of the array. The diffuser can include an optically transmissive filler material and a plurality of spaced-apart protrusions extending into the filler material. The protrusions can have varying heights. In some portions of the diffuser, the protrusions may be formed of optically transmissive material, to provide diffusion. In some other portions, the protrusions may be formed of light absorbing material to form a black mask in those sections.
Abstract:
Methods and apparatus for rendering colors in displays, such as adjustable interferometric modulation displays can produce many colors with different sub-sets of primary colors. Received colors to be rendered are analyzed to determine when the colors to be rendered are within a predefined neutral region of a color space. Temporal primary colors may be generated to be used for rendering the received colors in a color space that are generated by temporal modulation using at least two temporal subframes to mix first and second primary colors of a display, such as white and black primaries. The temporal primary colors are used when rendering colors that lie within the predefined neutral region of the color space. When white and black primaries are used for temporal modulation, the produced grayscale temporal primaries are more robust than using two complementary colors, affording more robust neutral and near neutral colors.
Abstract:
This disclosure provides systems, methods and apparatus for an illumination system. In one aspect, the illumination system is a light guide that includes spaced-apart regions of medium containing diffractive features. For example, the medium may include holographic medium having holograms that are configured to redirect light, propagating through the light guide, out of the light guide. The spaces between the spaced-apart regions of media may be filled with a material having a lower refractive index than the light guide, thereby functioning as a reflective cladding in those spaces.
Abstract:
This disclosure provides systems, methods and apparatus for multi-state interferometric modulator (MS-IMOD) implementations with an improved white-state color by incorporating an attenuator. The attenuator may be part of a mirror stack or part of an absorber stack. The attenuator may be capable of reducing the amount of green light reflected when the MS-IMOD is in a white state. The attenuator may include an absorber and/or a notch filter. In some implementations, the white color that is reflected when the MS-IMOD is in the white state may be substantially similar to that of CIE Standard Illuminant D65.
Abstract:
This disclosure provides systems, methods, and apparatus related to electromechanical systems display devices. In one aspect, an apparatus includes a display assembly, a sensor, and a processor. The display assembly may include an array of electromechanical systems display devices. The sensor may be configured to provide a signal indicative of an illumination angle, a viewing angle, or both, with respect to a line perpendicular to the display assembly. The processor may be configured to receive the signal from the sensor, to determine the illumination angle and/or viewing angle, and to process image data to compensate for the determined illumination angle and/or viewing angle. In one implementation, the image data is processed to compensate for a shift in a wavelength of light reflected from at least one of the electromechanical systems display devices that would have occurred as a result of a non-normal illumination and/or viewing angle.
Abstract:
This disclosure provides systems, methods, and apparatus for an analog or multistate electromechanical systems display devices including movable absorber together with a movable reflective layers. In one aspect, an electromechanical systems display device may include a movable reflector assembly and a movable absorber assembly. The absorber assembly may be disposed between the reflector assembly and a substrate. The absorber assembly may be configured to move to an absorber white state position proximate the reflector assembly and defining a first gap when the reflector assembly is in a reflector white/black position. The absorber assembly may be configured to move to a closed position closer to the substrate, defining a second gap, when the reflector assembly is in the reflector white/black position. The reflector assembly may be configured to move from the reflector white/black position to increase a height of the second gap when the absorber assembly is in the closed position.