Abstract:
This disclosure provides systems, methods and apparatus for a thin film transistor (TFT) device on a substrate. In one aspect, the TFT device includes a gate electrode, an oxide semiconductor layer, and a gate insulator between the gate electrode and the oxide semiconductor layer. The oxide semiconductor layer includes at least two metal oxides, with the two metal oxides having a varying concentration relative to one another between a lower surface and an upper surface of the oxide semiconductor layer. The TFT device also includes a source metal adjacent to a portion of the oxide semiconductor layer and a drain metal adjacent to another portion of the oxide semiconductor layer. The composition of the oxide semiconductor layer can be precisely controlled by a sequential deposition technique using atomic layer deposition (ALD).
Abstract:
This disclosure provides systems, methods and apparatus for measuring a temperature of a display. In one aspect, a circuit may use one or more stages of diodes or diode-connected transistors providing the functionality of diodes. Each stage may include the functionality of diodes in opposite directions. A direct current (DC) current source or an alternating current (AC) voltage source may be applied to the diodes or diode-connected transistors to measure the temperature of the display.
Abstract:
This disclosure provides apparatuses and methods for fabricating TFTs and storage capacitors on a substrate. In one aspect, an apparatus includes a TFT and a storage capacitor, where the TFT includes a first metal layer, a second metal layer, and a semiconductor layer, where the semiconductor layer is protected by a first etch stop layer and a second etch stop layer. The storage capacitor includes the second etch stop layer as a dielectric between the first metal layer and the second metal layer. In another aspect, an apparatus includes a TFT and a storage capacitor, where the TFT includes a first metal layer, a dielectric layer, and a semiconductor layer, where the semiconductor layer is protected by an etch stop layer. The storage capacitor includes the dielectric layer as a dielectric between the first metal layer and the semiconductor layer.
Abstract:
This disclosure provides methods and apparatuses for annealing an oxide semiconductor in a thin film transistor (TFT). In one aspect, the method includes providing a substrate with a partially fabricated TFT structure formed on the substrate. The partially fabricated TFT structure can include an oxide semiconductor layer and a dielectric oxide layer on the oxide semiconductor layer. The oxide semiconductor layer is annealed by heating the dielectric oxide layer with an infrared laser under ambient conditions to a temperature below the melting temperature of the oxide semiconductor layer. The infrared laser radiation can be substantially absorbed by the dielectric oxide layer and can remove unwanted defects from the oxide semiconductor layer at an interface in contact with the dielectric oxide layer.
Abstract:
This disclosure provides methods and apparatuses for annealing an oxide semiconductor in a thin film transistor (TFT). In one aspect, the method includes providing a substrate with a partially fabricated TFT structure formed on the substrate. The partially fabricated TFT structure can include an oxide semiconductor layer and a dielectric oxide layer on the oxide semiconductor layer. The oxide semiconductor layer is annealed by heating the dielectric oxide layer with an infrared laser under ambient conditions to a temperature below the melting temperature of the oxide semiconductor layer. The infrared laser radiation can be substantially absorbed by the dielectric oxide layer and can remove unwanted defects from the oxide semiconductor layer at an interface in contact with the dielectric oxide layer.
Abstract:
This disclosure provides systems, methods and apparatus for a thin film transistor (TFT) device on a substrate. In one aspect, the TFT device includes a gate electrode, an oxide semiconductor layer, and a gate insulator between the gate electrode and the oxide semiconductor layer. The oxide semiconductor layer includes at least two metal oxides, with the two metal oxides having a varying concentration relative to one another between a lower surface and an upper surface of the oxide semiconductor layer. The TFT device also includes a source metal adjacent to a portion of the oxide semiconductor layer and a drain metal adjacent to another portion of the oxide semiconductor layer. The composition of the oxide semiconductor layer can be precisely controlled by a sequential deposition technique using atomic layer deposition (ALD).