Abstract:
UEs are adapted to facilitate reconstruction of a segment of corrupted bits. According to one example, a UE can receive a control channel transmission such as a HS-SCCH transmission. The control channel transmission may include a plurality of information bits and a plurality of cyclic redundancy check (CRC) bits. The UE may further determine that a contiguous segment of the received information bits is corrupt. The UE may accordingly utilize the uncorrupted information bits and CRC bits to reconstruct the corrupt information bits. In some instances, the UE may utilize the uncorrupted bits to reconstruct the corrupt information bits using a new generator polynomial. In other instances, the UE may utilize the uncorrupted bits to reconstruct the corrupt information bits using the original generator polynomial.
Abstract:
Aspects of the methods and apparatus relate to performing user equipment (UE) only discontinuous transmission (DTX) smart blanking. One aspect of the methods and apparatus include maintaining a list of voice configurations that would trigger user equipment (UE) discontinuous transmission (DTX). Further, the aspect includes receiving a current voice configuration for the UE from a network, and determining whether the current voice configuration of the UE received from the network falls within the list of voice configurations that would trigger UE DTX. Further, the aspect includes enabling uplink UE DTX at the UE when the current voice configuration of a UE falls within the list of voice configurations.
Abstract:
Various aspects of the present disclosure provide for conditionally disabling discontinuous reception (DRX). For example, DRX may be disabled if there is a loss of DRX synchronization, a loss of signal radio bearer traffic, a poor radio frequency condition, a low signal-to-interference ratio estimate, a low transmit power condition, or a drop in transmit power. Various aspects of the present disclosure provide for determining that an access terminal and the network are not in synchronization (e.g., DRX synchronization), and attempting to re-synchronize the access terminal and the network. In cases where a loss of DRX synchronization involves one entity having DRX enabled while another entity has DRX disabled, DRX may be temporarily disabled until synchronization is restored. In cases where a loss of DRX synchronization involves different entities using different subframe indices, the subframe index used by one of the entities may be changed to restore synchronization.
Abstract:
An example method may include receiving a first subframe. In addition, the example method may include decoding information transmitted in the first subframe. Further, the example method may include switching to an inactive mode subsequent to the completion of the reception of the first subframe. Further still, the example method may include exiting the inactive mode and decoding downlink data transmitted in one or more second subframes in a current reception (Rx) burst time interval when the decoded information transmitted in the first subframe indicates an upcoming transmission of downlink data in the one or more second subframes.
Abstract:
An example method may include receiving a first subframe. In addition, the example method may include decoding information transmitted in the first subframe. Further, the example method may include switching to an inactive mode subsequent to the completion of the reception of the first subframe. Further still, the example method may include exiting the inactive mode and decoding downlink data transmitted in one or more second subframes in a current reception (Rx) burst time interval when the decoded information transmitted in the first subframe indicates an upcoming transmission of downlink data in the one or more second subframes.
Abstract:
Aspects of the methods and apparatus relate to performing user equipment (UE) only discontinuous transmission (DTX) smart blanking. One aspect of the methods and apparatus include maintaining a list of voice configurations that would trigger user equipment (UE) discontinuous transmission (DTX). Further, the aspect includes receiving a current voice configuration for the UE from a network, and determining whether the current voice configuration of the UE received from the network falls within the list of voice configurations that would trigger UE DTX. Further, the aspect includes enabling uplink UE DTX at the UE when the current voice configuration of a UE falls within the list of voice configurations.
Abstract:
CQI is enhanced in fast fading and/or poor RF scenarios. For example, in the event a fast fading condition and/or a poor RF condition is detected at a UE, a CQI value is increased by a defined delta. The UE reports this higher CQI value to a serving access point (e.g., base station) as long as the channel condition prevails this way such that a corresponding increase in throughput may subsequently be seen at the UE.
Abstract:
UEs are adapted to facilitate reconstruction of a segment of corrupted bits. According to one example, a UE can receive a control channel transmission such as a HS-SCCH transmission. The control channel transmission may include a plurality of information bits and a plurality of cyclic redundancy check (CRC) bits. The UE may further determine that a contiguous segment of the received information bits is corrupt. The UE may accordingly utilize the uncorrupted information bits and CRC bits to reconstruct the corrupt information bits. In some instances, the UE may utilize the uncorrupted bits to reconstruct the corrupt information bits using a new generator polynomial. In other instances, the UE may utilize the uncorrupted bits to reconstruct the corrupt information bits using the original generator polynomial. Other aspects, embodiments, and features are also included.
Abstract:
Methods and apparatus of wireless communication include receiving channel information and performing a first network activity estimation using at least a portion of the channel information. The first network activity estimation provides a first network activity indication. Moreover, the methods and apparatus include performing a second network activity estimation using at least another portion of the channel information. The second activity estimation provides a second network activity indication. Also, the method and apparatus include aggregating the network activity indications.
Abstract:
Various aspects of the present disclosure provide for conditionally disabling discontinuous reception (DRX). For example, DRX may be disabled if there is a loss of DRX synchronization, a loss of signal radio bearer traffic, a poor radio frequency condition, a low signal-to-interference ratio estimate, a low transmit power condition, or a drop in transmit power. Various aspects of the present disclosure provide for determining that an access terminal and the network are not in synchronization (e.g., DRX synchronization), and attempting to re-synchronize the access terminal and the network. In cases where a loss of DRX synchronization involves one entity having DRX enabled while another entity has DRX disabled, DRX may be temporarily disabled until synchronization is restored. In cases where a loss of DRX synchronization involves different entities using different subframe indices, the subframe index used by one of the entities may be changed to restore synchronization.